A Cross-Sectional Analysis of Health Status, Economic Burden, and Lifestyle Factors among Patients with Type 2 Diabetes at a Tertiary Care Hospital

Irshad Pasha¹, Baharul Islam Haidary^{1,*}, Gautham Krishna¹, Srikantesh Seegekuppe Puttaraju¹, Robin George¹, Hafis Ambalapotta¹, Bettur Jayappa Mahendra Kumar¹, Rajesh Venkataraman²

¹Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Mandya, Karnataka, INDIA.

ABSTRACT

Background: Type 2 Diabetes Mellitus is one of the most prevalent non communicable chronic disease globally. Early detection and modification of lifestyle including diet and physical activity, are crucial to prevent the progression and economic burden experienced by the patient in developing countries like India. **Objectives:** This study aimed to assess the health and economic outcomes associated with diabetes in consideration of lifestyle of patients with T2DM. **Materials and Methods:** A 6-months cross-sectional was conducted in tertiary care hospital. The study included 196 participants diagnosed with T2DM and based on the study criteria. Data collected from patient records and questionnaires were analysed by chi-square, correlation, and linear regression statistical methods. **Results:** Lifestyle habits, diet, and diabetes management were significantly associated with *p*-values <0.05, 95% CI for Chi-square and Pearson correlation. The average monthly cost of managing diabetes was found to be INR 7,197 (85.71 USD), exceeding the national minimum wage per month. **Conclusion:** Thus, the lifestyle factors such as diet, physical activity and healthy habits are effective adjuvants in managing health and economic constituents significantly there by reducing the complications and economic consequences of diabetic patients.

Keywords: Economic evaluation, Health care outcomes, Healthy lifestyle, Type 2 diabetes mellitus.

Correspondence:

Dr. Baharul Islam Haidary

Assistant professor, Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Mandya, Karnataka, INDIA. Email: dr.islambaharul@gmail.com

Received: 28-05-2025; **Revised:** 14-07-2025; **Accepted:** 04-09-2025.

ORCID: 0000-0003-4479-5063

INTRODUCTION

Type 2 Diabetes Mellitus (T2DM) is one of the Non-Communicable Chronic Diseases (NCCD) largely influenced by genetics, lifestyle, diet, habits, and environmental factors (Boutayeb, 2010; Budreviciute *et al.*, 2020; Derman *et al.*, 2008; *India - International Diabetes Federation*, n.d.; Ranieri *et al.*, 2022). T2DM is characterized by impaired insulin secretion and insulin resistance affecting 90% of individuals worldwide, particularly in low- to middle-income countries, posing an increased mortality rate and reduced quality of life for the patients. The ICMR-INDIAB study reports that about 62.4 million people have diabetes, while 77.2 million are prediabetic in India (Anjana *et al.*, 2011; Lambrinou *et al.*, 2019). Whereas the global prevalence of diabetes stands at 9.3%, impacting 473 million people, it is

predicted to increase to 10.2% i.e.,700 million individuals, by 2045, primarily in high-income countries and urban settings compared to rural (Saeedi *et al.*, 2019). Developing countries like India and Nepal face an increased risk of diabetes due to sedentary lifestyles and dietary habits, such as high-carbohydrate consumption, obesity, and insulin resistance for which preventive measures such as lifestyle and dietary changes to lower glycaemic index by including high-protein diets and physical activity play a crucial role (Fitipaldi *et al.*, 2018; Shrestha and Ghimire, 2012; Stephenson *et al.*, 2014).

Numerous clinical trials have demonstrated that targeted weight reduction, increased physical activity, and the adoption of diets low in saturated fat, fibre and protein rich diets are effective as primary treatments or adjuvants with pharmacological therapy to prevent the progression of the T2DM (*Diabetes Prevention Program (DPP) - NIDDK*, n.d.; Espinosa-Salas and Gonzalez-Arias, 2023; Haase *et al.*, 2021; Hill-Briggs *et al.*, 2020; Mohamed, 2014; Uusitupa *et al.*, 2019). The expenditure for managing diabetes is estimated at \$414 billion (Yang *et al.*, 2018). By 2030, the global prevalence of diabetes may rise to

DOI: 10.5530/jyp.20250064

${\bf Copyright\ Information:}$

Copyright Author (s) 2025 Distributed under Creative Commons CC-BY 4.0

Publishing Partner: Manuscript Technomedia. [www.mstechnomedia.com]

²Department of Pharmacy Practice, Parul University, Vadodara, Gujarat, INDIA.

10%, leading to economic costs between \$2.12 trillion and \$2.48 trillion (Bommer et al., 2018). In India, the annual economic cost for managing diabetes is approximately INR Rs. 10,969.6 (\$132.83), where the majority of the expense is related to drug prescriptions, increased with hospitalization and mortality worsens the condition socioeconomically (Fano et al., 2013; L et al., 2024; Shah et al., 2013). Cost-effectiveness analysis conducted by the Diabetes Prevention Program found that interventions applied in clinical practices, particularly lifestyle interventions, were effective across all age groups (Herman et al., 2005). These interventions significantly improve glycaemic control and reduce glycosylated haemoglobin (HbA₁) levels, contributing to better health and improved economic outcomes through cost-effective treatments (García-Molina et al., 2020). Thus, this study aimed to assess the health and economic outcomes associated with diabetes in consideration of the lifestyle of the T2DM patients.

MATERIALS AND METHODS

Study design and study settings

This was a cross-sectional study conducted in tertiary care hospital and research centre in rural settings for a period of 6 months (February 2024 to July 2024). The hospital settings provide multi-speciality facilities for various health issues and diabetic related issues as well and the hospital is accessible to more than three cities. The study was conducted in accordance with the Ethical guidelines for biomedical research on human participants and Declaration of Helsinki; after obtaining approval from the Institution Ethics Committee (IEC/AH&RC/AC/10/2024) and we reported this article as per the STROBE Checklist (Elm *et al.*, 2007). And after explanation of specific of the study informed consent was obtained from the study participants as provided in supplementary file S3 and S4.

Study participants inclusion and exclusion criteria

The T2DM patients aged 18 or above, increased HbA $_{1c} \ge 6.5\%$, RBS ≥ 200 mg/dl, FBS ≥ 120 mg/dl and PPBS ≥ 140 mg/dL were considered for this study. After the explanation of all the specific methods, those who were willing to give written consent were included in the study.

Participants less than age 18, T1 DM patients, gestational diabetes patients and those who were not willing to give informed consent were excluded from the study. And patients had right to withdraw from study at any point of the study without any explanation.

Sampling techniques and sample size calculation

Random sampling technique was used to calculate the sample size in this study. We estimated a minimum sample size of 196 participants with a margin of error of 5%, population proportion of 50%, precision of 0.05, at 95% of confidence interval with a prevalence of 8.3% in India according to Indian diabetic federation (*India - International Diabetes Federation*, n.d.).

Sample size was calculated by using random sampling method, the desired sample size was calculated by using the formula for infinite sample size (n_0) and was found to be 384. The actual sample size was calculated by using finite sample size (n) formula and was found to be 196.

Formula used to calculate infinite sample size (n_0) was:

$$n_0 = \frac{z^2 P(1 - P)}{E^2}$$

Where:

- Z = 1.96 (Z score for a 95% confidence interval)
- P = 50% (population proportion)
- E = 5% (margin of error)

And the finite sample size (n) was Calculated by using following formula,

$$n = \frac{n_0}{1 + \left(\frac{n_0}{N}\right)}$$

Where:

- $n_0 = 384$ (desired sample size for an infinite population)
- N = 400 (assumed population size)

Thus, the final sample size for the study was found to be 196 participants.

Data collection

Patients demographics details and clinical data such as patient history, age, diabetic status, presence of comorbidities and laboratory reports were obtained from the patients, using a pre-designed data collection form (Supplementary file S1). The pilot study of 30 participants with questionaries resulted 0.870 Cronbach value and reliability analysis interpreting good internal consistency of the questionnaire.

The questionnaire was composed of three parts, Diabetic status of the patient (Part 1) to determine the patient diabetic status and control over the diabetes and was made to scales with score such as 1-10 Indicates Under control, 11-20 Indicates Average control, 21-30 Indicates Poor control. Lifestyle, diet and habits related (Part 2) data of the patient, the pattern of diet, lifestyle and habit among diabetes patients was assessed in this section mainly to know the attitude, perception and knowledge of the diabetic patients where, 1-10 is Modified control on diabetes, 11-20 is Average control on diabetes and 21-30 is Non modified control on diabetes. And Pharmacoeconomic (Part 3) related information of the patient which includes, the economic burden which includes the scales with scores as 1-10 as Acceptable economic status, 11-20 is Average economic status and 21-30 as provided in supplementary file S2.

Statistical analysis

All the collected data were entered into Microsoft Excel sheets, thoroughly verified, and analysed Statistical Package for the Social Sciences (SPSS) free version 25.0 developed by IBM (Armonk, 2017). The categorical and continuous data were presented as frequency with percentages and mean with standard deviation respectively. Chi square and Cor-relation statistical methods were used to check the association between the variables of Parts of the questionnaire i.e., Diabetic status (Part1) and lifestyle, diet and habits parameters (Part 2) with pharmacoeconomic status (Part 3). Linear regression was analysed for the demographics with direct and indirect cost of cost of illness of diabetes.

The indirect cost was calculated based on the human capital approach and India's national floor level minimum wage is INR 5,340 monthly, the Minimum Wages Act provided specific powers to the Central and State Government in 2023 in India (Official Website of Labour Department, Government of Puducherry, India, n.d.).

RESULTS

Demographic characteristics of the patients

A total of 196 patients with T2DM were included of which 121 (61.7%) were male and 75 (38.2%) were female; most of the patients 90(45.9%) belongs to 41-60 years of age group, and also, median age of 86 (43.88%) belongs to 61-80 years of age group. It was observed that more than half, 127 (64.8%) of the patients were not had any habits and 97 (49.49%) were unemployed. The median income per month in Indian rupees were found to be 21000-30000 (17.35%), most of the patients were farmers 48 (24.5%) by occupation.

Also, 70 (35.5%) had T2DM only and more than 60% were had T2DM with comorbidities such as hypertension 67 (34.18%), hypothyroidism 13 (6.63%), chronic obstructive lung disease 7 (3.57%) and others. And most of the patients were on medication metformin 100 (39.84%) described in Table 1.

Association between Diabetic status, lifestyle factors and Pharmacoeconomics parts

The association between the total score obtained from the Diabetic status part and the lifestyle part of the questionnaire of the individual patient compared by using Chi square and correlation statistical methos resulted with p value of <0.05, CI of 95% (p value <0.001, 95% CI) and p value of <0.001, under 99% of confidence interval. Similarly, the association between the total score of the patient's diabetic status and pharmacoeconomic parts of the questionnaire were resulted with p value of <0.05, CI of 95% (p value <0.003, 95% CI) and p value of <0.001, under 99% of confidence interval as provided in Table 2.

Table 1: Distribution of demographic details and clinical parameters.

Table 1: Distribution of demographic details and clinical parameters.					
Variables	Frequency	Percentage			
Age					
20-40	15	7.6%			
41-60	90	45.9%			
61-80	86	43.8%			
81-100	5	2.5%			
Gende	r				
Male	121	61.7%			
Female	75	38.2%			
Occupati	ion				
Farmer	48	24.5%			
House wife	41	20.9%			
Welder	3	1.5%			
Attender	3	1.5%			
Lab attender	2	1.0%			
Hotel	2	1.0%			
Teacher	2	1.0%			
Watchman	1	0.5%			
Driver	11	5.6%			
General store	3	1.5%			
Zomato worker	1	0.5%			
Garments worker	3	1.5%			
Bus conductor	3	1.5%			
Market vendor	1	0.5%			
Tailor	2	1.0%			
Mechanic	2	1.0%			
Factory employee	2	1.0%			
Carpenter	1	0.5%			
Unknown	65	33.2%			
Anti-diabetic m	edication				
Metformin	100	39.8%			
Glimepiride	81	32.2%			
Dapagliflozin	5	1.9%			
Sitagliptin	3	1.2%			
Vildagliptin	15	5.9%			
Pioglitazone	2	0.8%			
Glipizide	2	0.8%			
Voglibose	7	2.7%			
Glargine	1	0.4%			
Mixtard	28	11.1%			
Actrapid	7	2.7%			
Range of in	come				
≤10000	2	1.0%			

Variables	Frequency	Percentage		
11000-20000	33	16.8%		
21000-30000	34	17.3%		
31000-40000	17	8.6%		
41000-50000	8	4.0%		
≥51000	5	2.5%		
Unemployed	97	49.4%		
Habits	5			
Nil	127	64.8%		
Smoker	33	16.8%		
Alcoholic	31	15.8%		
Tobacco chewer	3	1.5%		
Beetle nut chewer	2	1.0%		
Diagnos	sis			
T2DM and HTN	67	34.1%		
T2DM and Htn and	13	6.6%		
Hypothyroidism				
T2DM and Htn Hyperthyroidism	6	3.0%		
T2DM and COPD	7	3.5%		
T2DM and CLD	5	2.5%		
T2DM and IHD	6	3.0%		
T2DM and AKI	4	2.0%		
T2DM CKD	3	1.5%		
T2DM Anaemia	4	2.0%		
T2DM HF	2	1.0%		
T2DM Pyelonephritis	1	0.5%		
T2DM and TB	3	1.5%		
T2DM and epilepsy	2	1.0%		
T2DM Glaucoma	1	0.5%		
Newley diagnosed with T2DM	2	1.0%		
T2DM only	70	35.7%		
Diabetic st	tatus			
T2DM with complications	16	8.1%		
T2DM without complications	180	91.84%		
Diet, lifestyle and habits status				
8.1 Diet pattern of the patients				
Mixed, but with moderate carbohydrate and dietary fibres	34	17.3%		
Mixed with high carbohydrate.	137	69.9%		
Mixed with high fat.	25	12.8%		
8.2 Physical activities	es or exercises	S		
Walking 30-40 minutes daily	28	14.3%		
Walking 30 minutes 2 times in week	122	62.2%		
Rarely	46	23.5%		

Variables	Frequency	Percentage	
Habits observed among patients			
No	157	80.1%	
Daily 1-2 puffs or 1-2 drinks (60ml)	17	8.7%	
1 pack daily or more than 2 drinks (>60 mL)	22	11.2%	

Cost of illness

The mean of the total direct cost found to be \$ 29.04. While the mean of total indirect cost found to be \$56.67. The mean of total cost (direct cost + indirect cost) was observed to be 85.71 USD (29.04+56.67), which is Rs. 7,197 Indian rupees as described in Table 3.

Factors affecting the direct and indirect cost

Various demographic factors assessed for linear regression with direct and indirect cost and the significant association observed for Inj. glargine and indirect cost with a p value of <0.05, 95% of confidence interval. While, duration of hospital stays, glaucoma, chronic liver disease and Injection Mixtard were resulted in significant p value of <0.05, 95% of confidence interval with direct cost as provided in Table 4.

DISCUSSION

T2DM is still a global concern affecting nearly 90% of individuals worldwide particularly in low to middle income countries resulting in increased mortality and cost associated for the long-term treatment of the same (Anjana et al., 2011; Bommer et al., 2018; Fano et al., 2013; India - International Diabetes Federation, n.d.; L et al., 2024; Shah et al., 2013). Thus, the findings of this study emphasize the critical role of lifestyle, diet, and habits in the effective management of diabetes, these factors not only improve the quality of life of diabetic patients but also reduce the associated economic burden. It was observed that major proportion of included participants were aged between 41 and 60 years. A similar study by Khowaja LA et al., found mean age of population to be (38%) 51 and 60 years (Khowaja et al., 2007). However, remaining were 35.9% and 26.1% of 41 to 50 and 20 to 40. Also, in our study 61.7% were males and 38.2% were females respectively. Where the study from Pakistan by Butt M D et al., found the female population with more proportion 52.2% than male 47.5% (Butt et al., 2022).

The increasing global economic burden of diabetes, especially in countries like India, the United States, and China, address the lifestyle factors effective in management of type 2 diabetes relies heavily on lifestyle modifications targeting obesity and physical inactivity mitigates the diabetes risk and overall burden of the disease (Alfaifi, 2023; Campbell *et al.*, 2011; Cobden *et al.*, 2007; Foreyt and Poston, 1999; Galaviz *et al.*, 2018; Ratner, 1997; Sagarra

Table 2: Statistical analysis of Diabetic status, lifestyle and Economic status.

Chi square test for association of Diabetic status, lifestyle and Economic status				
Variables	Chi square	d_f	p value	
Diabetic status (Part 1) Vs Diet and lifestyle (Part 2)	552	255	0.001**	
Diet and lifestyle (Part 2) Vs Pharmacoeconomic status (Part 3)	640	187	0.002*	
Diabetic status (Part 1) Vs Pharmacoeconomic status (Part 3)	327	165	0.003*	
Corelation for association of Diabetic status, lifestyle and Economic status				
Variables	Pearson co-efficient p value		<i>p</i> value	
Diabetic status (Part 1) Vs Diet and lifestyle (Part 2)	0.585		0.001**	
Diet and lifestyle (Part 2) Vs Pharmacoeconomic status (Part 3)	0.728		0.001**	
Diabetic status (Part 1) Vs Pharmacoeconomic status (Part 3)	0.53		0.001**	

^(*) Indicates Significant correlation at 95% CI and (**) Indicates Significant correlation at 99% CI.

Table 3: The mean of direct and indirect cost of diabetes of hospitalized patients (n=196).

Cost component	Mean cost in USD	Percentage of mean cost		
Direct medical cost				
Doctor visit	11.8	13.7%		
Antidiabetic medication cost	5.8	6.7%		
Lab investigation cost	11.8	13.7%		
Overall cost of hospitalization	23.8	27.7%		
Dire	Direct non-medical cost			
Travelling cost	2.4	2.7%		
Total direct cost	29.04	33.8%		
Indirect cost				
Productivity loss	44.0	45.4%		
Other loss	68.7	80.1%		
Total Indirect cost	56.7	66.1%		
Total cost (a+b)	85.74			

Note: Here the mean of total direct and indirect cost of 196 patients was taken. And the other loss refers to intangible cost (non-measurable cost).

et al., 2014). In terms of economic outcomes, this study found the total cost for diabetic patients, including direct and indirect expenses, was approximately ₹7,197 (85.71 USD). Which exceeds the Indian National minimum wage of ₹5,340 per month. This financial burden suggests that many diabetic patients may struggle to afford necessary treatments, posing a challenge for government and healthcare policymakers. Similar study by M. Laxy et al. found that the Lifestyle Change Intervention significantly reduced type 2 diabetes risk and proved more cost-effective than routine care, with an Incremental Cost-Effectiveness Ratio (ICER) of US\$34,000 per Quality-Adjusted Life Year (QALY) (Laxy et al., 2020).

Other studies support the idea that lifestyle changes that can significantly increase the economic burden of diabetes. Similar studies carried out by L. A. Khowaja *et al.* found that medication constituted the largest cost component (46%), followed by laboratory costs (32%), with direct costs averaging Rs. 1,930 per visit. Also, the study by Raghuram N. *et al.* reported that the mean monthly health cost stood at 1,098.25 INR, representing approximately 17% of household expenses, with variations observed between gender and urban and rural environments (Nagarathna *et al.*, 2020).

The smaller population was a limitation of study, and further studies with a larger population shall be planned to strengthen our findings. This study was conducted among the rural population and hence future comparative studies are needed to understand the effect of lifestyle status, economic status and health status in diabetic patients to provide a support for diabetic patients in managing their disease and economic status as well.

CONCLUSION

The findings of the study highlight the significant role of lifestyle factors diet, physical activity and habits in managing diabetes, which not only improves health outcomes but also reduces the economic burden associated with the disease. In developing countries like India many patients struggle to afford costly antidiabetic medications and longer hospital stays. Thus, promoting of accessible healthcare and preventive measures by government health programmes and policy makers is essential to reducing the economic impact of diabetes. Further adequately powered prospective studies are needed to strengthen these findings.

ACKNOWLEDGEMENT

We acknowledge Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri Hospital and Adichunchanagiri University, BG Nagara for providing all the infrastructure to conduct this

Table 4: Linear regression of direct and indirect cost with sociodemographic (To identify the association of variables).

Variable	Direct co	Direct cost		Indirect cost	
	Adjusted R value	p value	Adjusted R value	<i>p</i> value	
Over all result of Diabetic status	-0.0202	0.119	-2.33	0.195	
Over all result of Lifestyle and diet	1.10E-04	0.993	5.05	0.006*	
Over all result of Pharmacoeconomics	0.0279	0.15	-5.62	0.037*	
Overall cost of hospitalization	0.0992	.099**	-1.6	0.577	
Antidiabetic medication cost	0.9772	.001**	3.87	0.189	
Metformin	-0.045	0.673	0.042	0.658	
Glimepiride	-0.033	0.741	0.07	0.433	
Mixtard	0.264	0.002*	-0.03	0.697	
Actrapid	0.07	0.422	-0.041	0.6	
vildagliptin	0.011	0.888	-0.009	0.898	
pioglitazone	-0.073	0.304	-0.005	0.94	
voglibose	0.064	0.504	0.158	0.066	
Glargine	0.162	0.087	0.168	0.049*	
Glycomet	-0.026	0.777	-0.063	0.448	
T2DM	-0.05	0.479	0.118	0.067	
HTN	0.151	0.096	0.122	0.13	
Hypothyroidism	-0.063	0.39	-0.004	0.953	
Hyperthyroidism	-0.095	0.224	-0.108	0.125	
COPD	-0.022	0.768	-0.001	0.988	
CLD	-0.221	0.004*	0.019	0.78	
IHD	0.139	0.066	0.049	0.471	
AKI	-0.045	0.542	-0.017	0.793	
CKD	0.071	0.358	-0.022	0.746	
Anaemia	-0.078	0.645	-0.029	0.847	
Hypertension	0.017	0.844	0.03	0.704	
HF	0.004	0.951	-0.097	0.104	
Pyelonephritis	0.025	0.705	-0.044	0.455	
ТВ	-0.046	0.642	0.042	0.637	
Epilepsy	0.043	0.6	0.01	0.893	
T2DM and HTN	-0.061	0.494	-0.152	0.058	
Glaucoma	-0.256	0.003*	-0.04	0.596	
Newley diagnosed	-0.051	0.512	0.008	0.906	
Nil	-0.104	0.383	-0.001	0.991	
Smoker	0.232	0.049	-0.078	0.462	
Alcoholic	0.207	0.061	-0.03	0.758	
Tobacco chewer	-0.045	0.655	-0.05	0.578	
Beetle nut chewer	-0.093	0.209	-0.076	0.253	
21-40	-0.094	0.36	0.091	0.322	
41-60	-0.17	0.041	0.029	0.695	
81-100	-0.072	0.331	0.043	0.514	
HbA _{1c} %	0.068	0.479	0.135	0.116	

939

Variable	Direct cost		Indirect cost	
	Adjusted R value	p value	Adjusted R value	p value
T2DM Without complications	0.028	0.762	0.026	0.756
Duration of hospital stay	0.252	0.003*	-0.044	0.557

(*) Indicates Significant correlation at 95% CI and (**) Indicates Significant correlation at 99% CI.

study. Also, we thank the patient participated in the study for their support.

ABBREVIATIONS

ICER: Incremental Cost-Effectiveness Ratio; ICMR: Indian council for medical research; IFG: Impaired fasting glucose; NCCD: Non communicable chronic disorders; OGTT: Oral glucose tolerance test; OHA: Oral hypoglycaemic agents; T2DM: Type 2 diabetes mellitus; QALY: Quality adjusted life years.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ETHICAL APPROVALS

The study was conducted in accordance with the Ethical guidelines for biomedical research on human participants and Declaration of Helsinki, after obtaining approval from the Institution Ethics Committee (IEC) with IEC no: IEC/AH&RC/AC/10/2024.

INFORMED CONSENT STATEMENT

Informed consent was obtained from all subjects involved in the study.

REFERENCES

- Acharya, K. G., Shah, K. N., Solanki, N. D., & Rana, D. A. (2013). Evaluation of antidiabetic prescriptions, cost and adherence to treatment guidelines: A prospective, cross-sectional study at a tertiary care teaching hospital. Journal of Basic and Clinical Pharmacy, 4(4), 82–87. https://doi.org/10.4103/0976-0105.121653
- Alfaifi, A. (2023). Association between non-pharmacological therapy and healthcare use and expenditure of patients with diabetes mellitus. Saudi Pharmaceutical Journal, 31(8), Article 101685. https://doi.org/10.1016/JJSPS.2023.06.018
- Anjana, R. M., Pradeepa, R., Deepa, M., Datta, M., Sudha, V., Unnikrishnan, R., Bhansali, A., Joshi, S. R., Joshi, P. P., Yajnik, C. S., Dhandhania, V. K., Nath, L. M., Das, A. K., Rao, P. V., Madhu, S. V., Shukla, D. K., Kaur, T., Priya, M., Nirmal, E., ICMR-INDIAB Collaborative Study Group. (2011). Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: Phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia, 54(12), 3022–3027. https://doi.org/10.1007/S00125-011-2291-5
- Armonk, N. I. (2017). Corp. IBM Corporation.
- Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., Davies, J., & Vollmer, S. (2018). Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care, 41(5), 963–970. https://doi.org/10.2 337/DC17-1962
- Boutayeb, A. (2010). The burden of communicable and non-communicable diseases in developing countries. Handbook of disease burdens and quality of life measures, 531. https://doi.org/10.1007/978-0-387-78665-0_32
- Budreviciute, A., Damiati, S., Sabir, D. K., Onder, K., Schuller-Goetzburg, P., Plakys, G., Katileviciute, A., Khoja, S., & Kodzius, R. (2020). Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Frontiers in Public Health, 8, Article 574111. https://doi.org/10.3389/FPUBH.2020.574111
- Butt, M. D., Ong, S. C., Wahab, M. U., Rasool, M. F., Saleem, F., Hashmi, A., Sajjad, A., Chaudhry, F. A., & Babar, Z.-U.-D. (2022). Cost of illness analysis of type 2 diabetes mellitus: The findings from a lower-middle income country. International Journal of Environmental Research and Public Health, 19(19), Article 12611. https://doi.org/10 .3390/IJERPH191912611

- Campbell, H. M., Khan, N., Cone, C., & Raisch, D. W. (2011). Relationship between diet, exercise habits, and health status among patients with diabetes. Research in Social and Administrative Pharmacy, 7(2), 151–161. https://doi.org/10.1016/J.SAPHARM.2 010.03.002
- Cobden, D., Lee, W. C., Balu, S., Joshi, A. V., & Pashos, C. L. (2007). Health outcomes and economic impact of therapy conversion to a biphasic insulin analog pen among privately insured patients with type 2 diabetes mellitus. Pharmacotherapy, 27(7), 948–962. https://doi.org/10.1592/PHCO.27.7.948
- Derman, E. W., Patel, D. N., Nossel, C. J., & Schwellnus, M. P. (2008). Healthy lifestyle interventions in general practice. South African Family Practice, 50(4), 6–12. https://doi.org/10.1080/20786204.2008.10873732
- Diabetes Prevention Program (DPP)-National Institute of Diabetes and Digestive and Kidney Diseases. (n.d.). Retrieved June 25, 2025, https://www.niddk.nih.gov/about-niddk/research-areas/diabetes/diabetes-prevention-program-dpp
- Espinosa-Salas, S., & Gonzalez-Arias, M. (2023). Behavior modification for lifestyle improvement. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK592418/
- Fano, V., Pezzotti, P., Gnavi, R., Bontempi, K., Miceli, M., Pagnozzi, E., Giarrizzo, M. L., & Fortino, A. (2013). The role of socio-economic factors on prevalence and health outcomes of persons with diabetes in Rome, Italy. European Journal of Public Health, 23(6), 991–997. https://doi.org/10.1093/EURPUB/CKS168
- Fitipaldi, H., McCarthy, M. I., Florez, J. C., & Franks, P. W. (2018). A global overview of precision medicine in type 2 diabetes. Diabetes, 67(10), 1911–1922. https://doi.org/ 10.2337/DB17-0045
- Foreyt, J. P., & Poston, W. S. C. (1999). The challenge of diet, exercise and lifestyle modification in the management of the obese diabetic patient. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 23 Suppl. 7(SUPPL. 7), S5–11. https://doi.org/10.1038/SJ.IJ O.0800955
- Galaviz, K. I., Narayan, K. M. V., Lobelo, F., & Weber, M. B. (2018). Lifestyle and the prevention of type 2 diabetes: A status report. American Journal of Lifestyle Medicine, 12(1), 4–20. https://doi.org/10.1177/1559827615619159
- García-Molina, L., Lewis-Mikhael, A.-M., Riquelme-Gallego, B., Cano-Ibáñez, N., Oliveras-López, M.-J., & Bueno-Cavanillas, A. (2020). Improving type 2 diabetes mellitus glycaemic control through lifestyle modification implementing diet intervention: A systematic review and meta-analysis. European Journal of Nutrition, 59(4), 1313–1328. https://doi.org/10.1007/500394-019-02147-6
- Haase, C. L., Lopes, S., Olsen, A. H., Satylganova, A., Schnecke, V., & McEwan, P. (2021). Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: Evidence from a UK primary care database. International Journal of Obesity, 45(6), 1249–1258. https://doi.org/10.1038/S41366-021-00788-4
- Herman, W. H., Hoerger, T. J., Brandle, M., Hicks, K., Sorensen, S., Zhang, P., Hamman, R. F., Ackermann, R. T., Engelgau, M. M., Ratner, R. E., & Diabetes Prevention Program Research Group. (2005). The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Annals of Internal Medicine, 142(5), 323–332. https://doi.org/10.7326/0003-4819-142-5-200503010-00007
- Hill-Briggs, F., Adler, N. E., Berkowitz, S. A., Chin, M. H., Gary-Webb, T. L., Navas-Acien, A., Thornton, P. L., & Haire-Joshu, D. (2020). Social determinants of health and diabetes: A scientific review. Diabetes Care, 44(1), 258–279. https://doi.org/10.2337/DCI20-0053
- IBM. SPSS Statistics for windows (version 25.0) (n.d.). International Diabetes Federation. Retrieved January 8, 2025, https://idf.org/our-network/regions-and-members/south-east-asia/members/india/
- Khowaja, L. A., Khuwaja, A. K., & Cosgrove, P. (2007). Cost of diabetes care in out-patient clinics of Karachi, Pakistan. BMC Health Services Research, 7, 189. https://doi.org/10.1186/1472-6963-7-189
- L, A., Cutinha, R. M., Sahoo, S. S., Dsouza, J. D., Shetty, S., Gururaj, C., & Kellarai, A. (2024). Effect of healthcare expenditure on the health related quality of life among diabetic patients of South India: A cross- sectional study. Clinical Epidemiology and Global Health, 25. https://doi.org/10.1016/J.CEGH.2023.101460
- Lambrinou, E., Hansen, T. B., & Beulens, J. W. J. (2019). Lifestyle factors, self-management and patient empowerment in diabetes care. European Journal of Preventive Cardiology, 26(2_suppl), 55–63. https://doi.org/10.1177/2047487319885 455
- Laxy, M., Zhang, P., Ng, B. P., Shao, H., Ali, M. K., Albright, A., & Gregg, E. W. (2020). Implementing lifestyle change interventions to prevent type 2 diabetes in US Medicaid programs: Cost effectiveness, and cost, health, and health equity impact. Applied Health Economics and Health Policy, 18(5), 713–726. https://doi.org/10.100 7/S40258-020-00565-W

- Mohamed, S. A. (2014). Effect of lifestyle intervention on health behaviors, weight and blood glucose level among patients with diabetes mellitus. Journal of Nursing Education and Practice, 4(12). https://doi.org/10.5430/JNEP.V4N12P75
- Nagarathna, R., Madhava, M., Patil, S. S., Singh, A., Perumal, K., Ningombam, G., & Nagendra, A. H. R. (2020). Cost of management of diabetes mellitus: A Pan India study. Annals of Neurosciences, 27 (3–4), 190–192. https://doi.org/10.1177/097275 3121998496
- Official Website of Labour Department. (n.d.). Government of Puducherry. Retrieved September 14, 2024, https://labour.py.gov.in/
- Ranieri, J., Guerra, F., Ferri, C., & Di Giacomo, D. (2022). Chronic non-communicable diseases and health awareness of patients: An observational study analysing the health adaptive behaviours through self-care skills. Journal of Psychiatric Research, 155, 596–603. https://doi.org/10.1016/J.JPSYCHIRES.2022.09.007
- Ratner, R. E. (1997). Long-term health care outcomes in diabetes. Economic and political implications. Endocrinology and Metabolism Clinics of North America, 26(3), 487–498. https://doi.org/10.1016/S0889-8529(05)70262-0
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., Williams, R., & IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, Article 107843. https://doi.org/10.1016/J.DIABRES.2019.107843
- Sagarra, R., Costa, B., Cabré, J. J., Solà-Morales, O., Barrio, F., & el Grupo de Investigación DE-PLAN-CAT/PREDICE. (2014). Lifestyle interventions for diabetes mellitus type 2 prevention. Revista Clínica Española, 214(2), 59–68. https://doi.org/10.1016/J.RCE.2 013.10.005
- Shrestha, P., & Ghimire, L. (2012). A Review about the Effect of Life style Modification on Diabetes and Quality of Life. Global Journal of Health Science, 4(6), 185–190. https://doi.org/10.5539/GJHS.V4N6P185
- von von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ, 335(7624), 806–808. https://doi.org/10.1136/bmj.39335.541782.AD

Cite this article: Pasha I, Haidary BI, Krishna G, Puttaraju SS, George R, Ambalapotta H, et al. A Cross-Sectional Analysis of Health Status, Economic Burden, and Lifestyle Factors among Patients with Type 2 Diabetes at a Tertiary Care Hospital. J Young Pharm. 2025;17(4):934-41.