
Information Research Communications, 2025; 2(1):98-119.
https://inforescom.org Research Article

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202598

DOI: 10.5530/irc.2.1.7

Copyright Information :

Copyright Author (s) 2025 Distributed under

Creative Commons CC-BY 4.0

Publishing Partner : ScienScript Digital. [www.scienscript.com.sg]

Comparative Analysis of Relational and Non-Relational
Database Models: A Case Study on Travel Booking Systems
Chan Pui Ying1, Joselyn Chin Shi Min1, Gan Yi Jean1, Leong Zheng Xuan1, Nurjiha Natasha Binti Md Rafi1,
Sathishkumar Veerappampalayam Easwaramoorthy1,*, Usha Moorthy2

1School of Computing and Artificial Intelligence, Faculty of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, Selangor Darul Ehsan, MALAYSIA.
2Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal,
Karnataka, INDIA.

ABSTRACT
Aim/Background: The study aims to evaluate and compare relational and non-relational
(NoSQL) database models in the context of travel booking systems. Traditional relational
databases like MySQL are known for their data integrity and structured schema, while NoSQL
models like ArangoDB, Apache Cassandra, Memcached, and MongoDB offer scalability and
flexibility. This research investigates which model performs best across various database
operations relevant to real-world scenarios. Methodology: The research used both theoretical
and practical methods. A literature review was conducted using sources such as Google Scholar,
IEEE Xplore, and database documentation. The team implemented a travel booking system to
perform standardized operations like insert, update, delete, retrieve, access control, and integrity
checks using five selected DBMSs. Performance metrics included execution time, CPU usage,
throughput, and constraint handling, and were analyzed using visualizations and comparative
tables. Results: Apache Cassandra showed the best overall performance for flight booking
systems due to high throughput and scalability. MySQL performed exceptionally in data integrity
and consistent performance under constraints. ArangoDB showed flexibility and low insertion
time but required a learning curve. Memcached excelled in insert/delete throughput but lacked
persistence. MongoDB offered schema flexibility but lagged in constrained scenarios and
multi-document transactions. Discussion: The findings reveal that database selection should
align with specific application needs. NoSQL models are preferable for high-speed, flexible
operations, while relational databases are superior for structured, integrity-focused use cases.
The study corroborates prior research advocating NoSQL for big data applications, yet highlights
the enduring value of RDBMSs in mission-critical systems. Conclusion: Apache Cassandra is the
most appropriate choice for large-scale, dynamic systems like travel booking due to its high
availability and performance. MySQL and ArangoDB also have strong points for specific tasks. The
research emphasizes that no one-size-fits-all model exists, and DBMS selection must consider
operation type, data size, and performance requirements.

Keywords: Relational Databases, NoSQL Databases, Database Performance Evaluation, Travel
Booking Systems, Data Integrity and Access Control, Scalability and Throughput.

INTRODUCTION

Background of Study

Databases are one of the most important building blocks of any
present-day information systems, as they allow for both collecting
and organizing these resources. Originally, important data
was stored through Relational Database Management Systems
(RDBMS) such as MySQL, with Structured Query Language

(SQL) to manage the relational database as per the schema. In
context of RDBMS, the data is stored in the form of tables with
rows and columns and one table can have reference to other table
by using foreign keys and the join operation can be used to get
relationship between one table and another table. This structured
approach safeguards the data, and it reduces or eliminates
option and makes RDBMS rather suitable for many traditional
applications Seghier, N. B., & Kazar, O., (2021).

Nevertheless, with big data appearing on the scene, the data
has become more diverse, fast, and massive, creating new
difficulties for RDBMS. Use and demand for easy to scale
and more performance-based databases make it easier to use
Non-Relational or NoSQL databases. NoSQL is classified into

Received: 19-02-2025;
Revised: 04-04-2025;
Accepted: 28-05-2025.

Correspondence:
Dr. Sathishkumar Veerappampalayam
Easwaramoorthy
School of Computing and Artificial
Intelligence, Faculty of Engineering and
Technology, Sunway University, No. 5,
Jalan Universiti, Bandar Sunway, 47500
Selangor Darul Ehsan, MALAYSIA.
Email: sathishv@sunway.edu.my

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 99

several types each of which is optimized to match a type of data
and application requirements more than relational. Chen, J.-K.,
& Lee, W.-Z., (2019).

Graph Model

ArangoDB and all the other graph databases arrange data in
nodes and edges that stand for the entities and their connecting
means, respectively. This model performs the best in cases
when there is a need to define a connection between variables,
and this connection is variable itself, like in social networks,
recommendation systems, and fraud detection. Walke, D., et al.,
(2023).

Wide-Column Model

Wide-column databases such as Apache Cassandra stores data in
rows and/or columns and unlike the normal RDBMS data model
it differs in that it can accommodate more flexible data models.
The rows can be defined independently from the columns and
the table, which makes the structure perfect for huge, distributed
datasets with differing schema. This model is particularly
effective for time series data, real-time analysis and logging in
large systems.

Key-Value Model

A type of NoSQL databases is key-value databases where
information is stored in form of a key-value type of pairs as is
seen in Memcached. This basic model delivers high throughput
read and write capabilities that are ideal for caching, user sessions
and real-time processing when initial access to data is paramount.

Document Model

Document store databases such as MongoDB really store data in
JSON like documents with possibility to nest and contain data of
different types. This model is flexible in representation since it
enables usage of XML structure in flexible content management
systems, e-commerce and any application that deals with dynamic
and hierarchical data Zaniewicz, N., & Salamończyk, A., (2022).

Problem Statement

Although today more and more systems use NoSQL databases,
most organizations still use relational databases intensively,
which complicates the decision on the choice of the appropriate
database model for certain applications. Other issues making
this decision hard are the absence of a definite protocol on the
distinctions between relational and non-relational databases
and concrete comparisons of the two in the creation, operation,
querying, security, and integrity of data. As such, this research
seeks to fill this research gap by developing a comparative study
between a Relational Database Management System (MySQL)
and NoSQL Database Management Systems of ArangoDB,
Apache Cassandra, Memcached, and MongoDB.

Significance of Study

The research is valuable for the database administrators, system
architects, and IT decision makers who are always under pressure
of choosing the most appropriate database model relevant to
their needs. Through presenting the detailed findings of the
comparison between Relational Database Model (MySQL) and
other NoSQL databases, this research will be beneficiary in terms
of sharing the strengths and weaknesses of such models. Such
distinctions will help organizations decide how to most efficiently
meet the requirements posed by current data applications and the
nature of data itself. In addition, this study will help to enrich the
scientific discourse on database technologies, thus contributing
to a more effective understanding of real-life use of both
relational and non-relational database solutions along with their
performance profiles.

Research Questions

What are the differences between relational and non-relational
database models in terms of data creation, data manipulation,
data retrieval, access control, and data integrity?

Which database model is the most suitable for travel booking
system scenario based on these aspects?

To answer these research questions, the study will adopt the use
of the comparison of these database models in the scenario of the
travel booking system. This will entail determining each database
model’s efficiency in use scenarios, a real-world approach to
assessing their applicability in managing flight booking data.

LITERATURE REVIEW

Data Creation

The process of creating data is a significant step in the management
of a database and includes the following steps. First of all, creating
a data model which is a kind of a plan describing the structure of
the database and how the data is stored and connected meeting
users’ needs. It also contains the definition of the tables and, field
in the tables and their types collectively their definitions and the
relation between the tables Daugirdas, D., & Zatorskis, J., (2023).
When the schema is developed then, tables are formed using such
SQL commands such as create table comprising of fields and data
types. When creating tables, it is necessary to set up the primary
and foreign keys through which the data integrity is imposed and
necessary links between related data are made Sug, H., (2020).

After the tables have been created in the database a load data
process takes place. This can be accomplished by writing simple
INSERT SQL statements to insert records on an exclusive basis
or, using bulk insert operations that are characteristic of Extract,
Transform, Load (ETL) tools Wang, X., et al., (2022). ETL tools
simplify the data loading process through retrieval of data from
different sources, the processing of data into a form that fits in the
database schema and then loading the data into the tables. For

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025100

instance, it could involve the data collected from CSV files or APIs
and where data is pre-cleaned and formatted to match database
specifications, the data transfer is done in large volumes. Such
systematic approach to data creation is useful in guaranteeing
the proper laying down of a well-structured and had populated
database to ease data management and captures Bansal, S., &
Kagemann, S., (2015).

Data Manipulation

Data manipulation involves the processes and methods of
interaction with the data as well as with databases. Structured Query
Language or SQL is the common language for these functions:
SELECT, INSERT, UPDATE, DELETE. Data manipulation
guarantees the credibility, coherence, and availability of data for
the intended use. Retrieval is done by using the SELECT statement
where data can be requested based on certain criteria in reference
to SQL. The INSERT statement can be used to write new records
to a database table, which enables the expansion of data. The
UPDATE statement will allow editing records to make sure that
data will always be up to date. The DELETE statement erases
records from a database which helps in the management of the
database and its space. Collectively, these operations facilitate the
accuracy, uniformity, and usability of data for proper functioning
of database systems. Data manipulation techniques are crucial in
data management to ensure the accuracy of data, quick execution
of queries, and performance of transactions, which are vital for
the proper functioning of today’s DBMS Silberschatz, A., Korth,
H. F., & Sudarshan, S. (2011). Data manipulation plays a central
role in the database management since it deals directly and has
a direct impact with the quality, reliability, and efficiency of
data-driven processes and applications. That is why it allows
the manipulation of data in real-time, including data analysis,
decision-making, and operations automation. It is significant to
properly manipulate data to the extent that data continues to be
an organizational asset through helping in intelligence gathering
and business operations Elmasri, R., & Navathe, S., (2013).

Data Retrieval

Data retrieval in databases is one of the prime operations
that involves extracting and presenting data stored within a
database system in a significant manner. It is a process through
which users can query and fetch the required data for several
applications. The retrieval process starts with the formulation
of a query that is a structured request to extract specific data

based on defined criteria. The database management system then
parses, optimises, and executes this query to fetch the requested
data from the database. In databases, data accessing is also an
important factor by which the performance of the database
can be maintained, and it includes the concepts of indexes,
query optimization techniques and few of them utilize caching
mechanisms. Besides that, it is understood that newer databases
offer simple questions, joined queries, aggregate functions, and
full text searches. This versatility makes it possible for users to
execute multiple operations right from simple data searches to
complex data analysis, and even data reporting. Besides providing
timely and rapid access to the required data, data retrieval helps
in facilitating the decision-making process by supplying correct
and pertinent data findings Callan, J., (2005).

Access Control

Another aspect of information security is access control which
is defined as the ability to regulate and restrict an entity’s access
to a specific resource or object in a system. The main objective of
access control is to safeguard data and the integrity of systems by
permitting only those who are authorized to use the systems. The
access control mechanisms are supposed to enforce the security
policies and avoid any form of intrusion. They include several
functions like user identification and authentication functions
that check the identity of persons who want to access. Moreover,
access control measures assist in preventing the data from being
accessed or changed by unauthorized personnel, thus enhancing
the security of information Samarati, P., & De Vimercati, S. C.,
(2001). Access control also has features for intrusion to ensure
that the security of the system is not compromised. By applying
the right access control measures, the risks are reduced, and the
information is safeguarded from the wrong people and dangers.
An example of the access control mechanisms is Access Control
Lists (ACLs) that are used to limit the access to the data on the
shared systems by connecting to the objects such as files and
identifying the users or groups that are permitted to access the
objects Petković, M., & Jonker, W., (2007). Therefore, access
control is one of the most important aspects of information
security that is vital in the protection of data confidentiality, data
integrity, and data availability in any system.

Data Integrity

Data integrity is essential in a database, ensuring accurate,
complete and consistent information at any stage of its use. It is

Student ID Name Major Birth Date Enrollment Date
1 Samantha Brooks Computer Science 2000-01-15 2023-09-01
2 John Robin Business Management 1999-11-11 2023-09-01
3 Ava Johnson Engineering 2001-03-1 2022-03-14
4 Justin Hayes Finance 2002-09-9 2022-03-14

Table 1: Relational Model Structure.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 101

crucial to maintain data reliability, as data that has been corrupted
or altered can lead to wrong conclusion and strategic mistakes.
Another important aspect that differentiates data integrity from
data security is that the former is concerned with the quality
of the data, while the latter is concerned with the protection of
the data from unauthorized access and breaches. Data integrity
entails several processes such as accurate data collection, error
checking and cybersecurity measures to prevent data breaches
from internal or external threats Harvard Business School,
(2021). Data integrity is not only important for decision making
but also for maintaining trust and credibility with stakeholders by
protecting sensitive information and adhering to legal standards.
Furthermore, data integrity improves the operational performance
since it reduces errors and the time and effort required to rectify

them. Finally, it is crucial to emphasize that data integrity as a key
to safeguarding the data, preserve reputation and guarantee the
accuracy of organizational operations and results.

Relational Database Model (MySQL)

Edgar F. Codd proposed the relational database model in 1970
and that has remained the mainstream for decades of database
management systems. MySQL, which is developed by Oracle
Corporation, utilises a relational database model that is used to
organise data into tables which are linked by relationships. It
is known for its robustness, reliability, and performance, thus
making it a popular choice for web applications, data warehousing,
and business applications Blansit, B. D., (2006).

MySQL organises data into tables that consist of rows and columns.
In this matter, each table represents a specific entity type whereas
each row within a table corresponds to a unique instance of that
entity that is identified by a primary key. Columns represent the
attributes of the entity to produce a structured and consistent
format for data storage. According to Table 1, The ‘Students’ table
records detailed information about each student such as their ID,
name, major, birthdate, and enrolment date.

As shown in Table 2, the SQL commands table provides examples
of basic SQL operations for managing the ‘Students’ table
consisting of selecting, inserting, updating, and deleting records.

However, while the relational model remains highly effective,
especially for structured data and complex queries, it faces
challenges with unstructured data and scalability in certain

Operation SQL Command
Select data SELECT * FROM Students;
Insert data INSERT INTO Students (Student ID,

Name, Major) VALUES (1, 'Alice Johnson',
'Computer Sci');

Update data UPDATE Students SET Major = 'Data
Science' WHERE Student ID = 1;

Delete table DELETE FROM Students WHERE Student
ID = 1;

Create table CREATE TABLE Students (Student ID INT
PRIMARY KEY, Name VARCHAR (100),
Major VARCHAR (100));

Table 2: Basic SQL Commands.

Database Data Distribution Schema Constraints Consistency
MySQL Data is not inherently

distributed across a few
nodes by default, but
can be configured for
replication.

Fixed schema design
where one column
contains specific data type
and structure is strictly
followed.

Supports primary key,
foreign key, unique key,
not null key and check
constraints.

Strong ACID compliance
when using InnoDB
storage engine.

ArangoDB Data is distributed across
nodes using sharding.

Flexible schema design,
supports both document
and graph data models.

Supports primary key
constraints, no foreign key
constraints.

Eventual consistency, can
be configured for strong
consistency in some cases.

Cassandra Data is distributed across
all nodes and divided into
partition using partition
key.

Flexible schema design
allows each row to have
different columns.

Supports primary key
constraints, no foreign
key constraints and join
operations.

Eventual consistency, all
the replicas will converge
to same value.

Memcached Data is distributed across
multiple servers using a
hashing algorithm.

Memcached is a key-value
store and does not enforce
a schema.

Does not support
database-level constraints.

Eventual consistency,
focusing on high
availability and
performance.

MongoDB The shard key is used to
distribute a collection's
documents across shards.

Flexible schema model,
documents in a collection
do not need to have the
same fields or data types
by default.

Schema validation
supports constraints on
documents structure.

Eventual consistency and
replica sets are used for
redundancy and data
availability.

Table 3: Summary for Each DBMS.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025102

contexts. This has led to the development of alternative models
like NoSQL that provide different approaches to data management
and scalability Kunda, D., & Phiri, H., (2017).

Access Control
In MongoDB, access control ensures that only authorized users
are able to access and alter data by configuring authentication
and authorization MongoDB. (n.d.). Creating authentication and
roles, validating setups, and implementing extra data security
measures all contribute to effective access control in MongoDB.
To enable authentication, start MongoDB with ‘auth’. Create an
admin user before enabling it:
db.createUser({
	 user : “admin”,
	 pwd: “adpwd”,
roles:[{ role: “userAdminAnyDatabase”,
db: “admin}]
Create custom role:
db.createUser({
	 role: “customRole”,
	 privileges:[{resource:{db: “AnyDatabase”,
collection: “”}, actions: [“read”]]},
roles:[] })

Data Integrity
Nevertheless, MongoDB is flexible and schema-free, however,
it has some drawbacks compared to traditional RDBMS like
the absence of data integrity related features shown in Table 3.
Different from most of RDBMS that works on the principle of
schemas and utilizing primary and/or foreign keys to determine
consistency, MongoDB makes use of unique_id fields and

implementation of application logics for referential integrity It
includes features like, optional schema validation and it seems
to support multi-document transactions for atomicity, however,
it lacks the full-fledged constraints and strong consistency as
offered by relational database management systems. Additionally,
MongoDB’s eventual consistency model is quite different from
the strong consistency offered by centralized RDBMS systems
Giamas., (2019).

Summary Table for Each DBMS
Research Methodology

Gathering Information

Our literature review focused on exploring the five primary
database models. To support our analysis, we selected specific
databases that exemplify each model:

Relational model: MySQL.

Graph model: ArangoDB.

Wide-column model: Apache Cassandra.

Key-value model: Memcached.

Document model: MongoDB.

We aimed to understand how each model operates, particularly
in relation to key database operations such as:

Data creation.

Data manipulation.

Data retrieval.

Access control.

Figure 1: Data Creation Time for Different Database Models.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 103

Data integrity.

We conducted our literature search using reputable academic
platforms, including:

Google Scholar.

Sunway Library.

IEEE Xplore.

ScienceDirect.

Additionally, we consulted official websites and documentation
for the selected databases to ensure that our review was informed
by accurate and up-to-date information.

Procedures

First of all, we provided an initial survey of each database model
with the help of free online courses and YouTube videos to get
acquainted with different types of databases and their application.

We then went to the documentation of each of the database
models under consideration as an official documentation.
For instance, Apache Cassandra has a website that provides
descriptions of how it functions and how to use it. Similarly,
to understand the specifics of these systems, we referred to the
official documentation of MySQL, ArangoDB, Memcached, and
MongoDB.

After we had a theoretical understanding of the concepts, we went
to the practical implementation of the concepts. For setting up
the different conditions and to test the feasibility of the approach,
we used the Web resources and trial versions of the databases. For
the relational databases like MySQL, we downloaded the MySQL

Community Edition and installed it on the local computers for the
purpose of testing. For more complex databases such as Apache
Cassandra, we utilized virtual machine tools such as Docker to
run the database in a container.

To compare the feasibility of each of the database models for the
given scenario, we developed a travel booking system. We created
sample tables and did simple operations like insertion, update,
deletion, select, security and constraints. This practical aspect
allowed us to observe how each of the database models handles
data and operations in practice.

METHODOLOGY

The research method used in this study was theoretical and
practical in an effort to establish the efficiency of the various
database models. We began with the fundamental concepts
and functions of each database model regarding data input,
data modification, data retrieval, security, and data consistency.
This theoretical background was useful for the evaluation of the
strengths and the weaknesses of each model.

Following this, we conducted hands-on experiments to assess
the performance of the selected databases: MySQL, ArangoDB,
Apache Cassandra, Memcached, and MongoDB. In these
experiments, we generated synthetic data and performed a series
of operations that are related to a travel booking system. These
operations included insertion of data, update, delete, query,
control of access and application of constraints.

To compare the performance and scalability of each of the
database models, the time taken to execute each of the queries
was measured for different data sizes. We also assessed how each

Figure 2: Data Update Time for Different Database Models.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025104

model offered access control and employed constraints to secure
data and ensure its accuracy. The collected data was then plotted in
order to compare the performance of each model under different
conditions. This approach helped to understand how each of the
database models works in terms of data volumes, operations, and
security, which is useful information on the practical application
of the models.

RESULTS

Scenario 1: Flight Booking System

This flight booking system is a complex system which means
giving the user as much information as possible about flight
schedules and making the process of flight booking easy. An
entry in the Flight table involves attributes such as Flight ID, the
airline name, departure and arrival cities, the scheduled time of
departure and arrival, flight duration, and ticket price. People
who wish to travel have the option to search for a particular flight
according to their preferred location for departure, destination,
airline company, and date on which they intend to travel. Ranges
of prices for the flights are available and the flight duration and
the time of the flights, whether they are taking off or arriving can
also be searched on the system.

Strength and Weaknesses Győrödi, C, et al., (2021)
Relational Database Model (MYSQL)

Strengths

Data integrity

MySQL enforces data integrity through constraints like primary
keys, foreign keys, unique constraints and check constraints to
ensure data accuracy and consistency.

ACID compliance

MySQL supports ACID (Atomicity, Consistency, Isolation,
Durability) properties that guarantee reliable transactions and
maintain database stability even in the event of a system failure.

Scalability

MySQL can handle a large amount of data and high traffic
that makes it suitable for both small-scale and enterprise-level
applications with the ability to scale horizontally.

Query optimization

MySQL includes a query optimizer that determines the most
efficient way to execute SQL queries, improving the performance
and speed of data retrieval.

Security

MySQL incorporates strong security features like user
authentication, SSL encryption as well as access control to ensure
that data is safeguarded against unauthorized access and breaches.

Weaknesses
Complexity

Achieving optimal performance and security may need complex
configuration and fine-tuning that can be challenging and
time-consuming for inexperienced users.

Cost

Even though MySQL itself is open-source, certain advanced
features and support services may come at a cost, particularly
with enterprise versions like MySQL Enterprise Edition.

Figure 3: Data Insertion Time for Different Database Models.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 105

Scalability

While MySQL can handle significant loads, it may face some
scalability issues in extremely high-transaction conditions that
require careful configuration and optimization.

Performance

MySQL can experience performance bottlenecks, especially
with complex queries, large join operations, or high-transaction
volumes, which may require extensive optimization.

Limited NoSQL features

MySQL's support for NoSQL features such as JSON data types
and document storage is not as advanced as dedicated NoSQL

databases. This limits its flexibility for certain types of data and

applications.

Graph Model (ArangoDB)

Strengths

Multi-Model Capabilities

This makes it easy to work with as it supports documents KB

and graphs and ACID transactions. This is especially useful in a

flight booking system since the different entities such as flights,

passengers, bookings, and so on, can well represented.

Figure 4: Data Deletion Time for Different Database Models.

Figure 5: Data Retrieval Time for Different Database Models.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025106

AQL (ArangoDB Query Language)

AQL offers similar querying functionality that allows for more
complex queries such as flight search, book flights, or access to
the passenger details. Learning it is easier for developers who have
worked with relational databases; this is due to its resemblance to
SQL.

Scalability

ArangoDB is horizontally scalable and will be able to handle
large amounts of data and traffic characteristic of a flight booking
system. Sharding/ partitioning and replication is another feature
which aims at making a provision for expansion of the database
with growth of the demands of the systems.

Performance

One major factor is the database’s capacity to handle such

elaborate queries because response time is a big aspect in a flight

booking system. ArangoDB’s operation in terms of querying

and indexing is a plus for keeping the system on the right side of

response time.

Flexibility

This structure of ArangoDB is favourable for models change and

extension for it does not require changes of the whole structure of

the database when business requires.

Figure 6: CPU Usage for Different DBMS operations.

Figure 7: Different DBMS Operations with and Without Constraints on Different Data Size.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 107

Weaknesses

Learning Curve

In common, AQL is very useful, but in the same time, it needs

a learning curve for those who did not work with ArangoDB

system and its concept of the multi-model database. This might

mean that the development team needs more training in the use

of the defined process.

Complexity of Multi-Model Management

Multiple data models might complicate the structure and designs
of the information systems. The work that developers do requires
them to be familiar with different types of data and how those
data can be integrated.

Community and Ecosystem

Thus, ArangoDB is less popular than databases like MongoDB
or MySQL: the number of users and the support for this system

Figure 8: Insert Throughput Comparison Between Different Database Models.

Figure 9: Update Throughput Comparison Between Different Database Models.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025108

is much lower. This can lead to fewer options for getting support

and integrating different kinds of tools, resources and plugins

Enterprise Features

Certain additional features including security options, the ability

to scale the size of the site and additional administrative functions

are restricted to the paid for Enterprise option which may prove

more costly for businesses who require such additions.

Tooling and Integration

Even though ArangoDB has its hookups with numerous tools and

platforms, it emerges that the support may not be as profound

as one would expect given other databases. There is always a

possibility that the chosen solution will have to be adapted to fit

the existing infrastructure as well as interfaced with third-party

tools and services, which would take extra work.

Figure 10: Delete Throughput Comparison Between Different Database Models.

Figure 11: Difference between Baseline Performance vs Optimized Performance.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 109

Wide column model (Apache Cassandra)
Strengths

Scalability

In Cassandra, it enables horizontal scaling to be performed very
easily. This helps the system to respond to high volumes of data
creation requests like flight bookings and customers registration
while using the number of nodes and no node is at a failure point.

High write throughput

Cassandra is designed for high write throughput as it is useful
for systems where data is frequently written such as changing
booking status or flight schedules. This is due to the fact that its
log-structured storage is append-only, which makes the writing
operation fast and efficient.

Low latency reads with proper data modeling

When data is modeled correctly, Cassandra is capable of delivering
low latency read by being able to find the data in the right nodes
using the partition key. This is helpful when searching for flight
schedules, booking information and customer data.

Role-Based Access Control (RBAC)

Cassandra supports role-based access where privileges are
granted based on roles, and these roles are defined with certain
access rights. This assists in the protection of the data and equally
allows only the user who is permitted to do so.

Lightweight Transactions (LWT)

LWT in Cassandra is a way to enforce strong consistency for
certain operations, such as conditional update or insert. This is
especially helpful in avoiding such cases happening when two
people being assigned to the same seat.

Weaknesses

Lack of complex constraints

Cassandra is limited in its ability to support complex constraints
such as foreign keys, unique constraints other than primary
keys, and check constraints. This implies that some of the data
integrity constraints, for example checking that each customer
has a unique email address for checking that a seat has not been
double booked has to be checked at the application level rather
than at the database level.

Eventual consistency

It is important to note that all the data manipulation operations
in Cassandra are eventually consistent by default. This means that
there may occur a time lag before all the nodes in the cluster have
updated data and when this happens, the data will be inconsistent
temporarily. This is especially the case when there needs to be
a very strict level of consistency, such as during payment or
booking seats.

Limited query flexibility

Cassandra expects the queries to be built around the partition
key or the secondary indexes. Without these, data retrieval
becomes either inefficient or is not supported at all. The ‘ALLOW
FILTERING’ clause can be used but should be noted that this can
cause performance variability and high resource usage.

Figure 12: Performance Improvement of Different Database Models in Percentage.

Condition 1: Condition 2:
Retrieve flights where the
price is between $200 and
$500, and the destination is
Dallas.

Retrieve flights operated by
"Airline A" or "Airline B" that
depart from "New York" and
arrive in "Los Angeles".

Table 4: Two Condition for Data Retrieval.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025110

Limited granular control

RBAC is useful for securing the database, but Cassandra’s
access control mechanisms may not be as refined as the ones in
traditional rational database systems. For instance, features like
row-level security are not implemented, which may be a problem
when working with multi-tenant applications or any other cases
when data access must be carefully controlled.

Limited support for complex integrity constraints

Cassandra does not support some of the advanced integrity
constraints such as foreign key and unique constraints which
may make it somewhat difficult to enforce certain data integrity
rules at the database level. This often requires more application
processing or invokes other processes to validate the data and
ensure data integrity.

Key-Value Model (Memcached)
Strengths

High Performance

Memcached is designed for speed, providing quick data retrieval
and storage, making it ideal for caching frequently accessed data
to improve application performance.

Scalability

It can be scaled horizontally by adding more nodes to the cluster,
allowing it to handle increased loads and large datasets effectively.

Simplicity

Memcached has a straightforward design and easy-to-use APIs,
making it simple to integrate and use within applications.

Memory Efficiency

It has a good memory management since it has a mechanism
of Removing the Least Used (LRU) to allow efficient use of the
available memory.

Wide Adoption and Community Support

Memcached is quite popular and has a lot of backing, which
means that there is a lot of information available on the internet
and many people who can help if you run into problems.

Weaknesses
Lack of Persistence

Memcached does not support persistence; all the data stored in
it is lost in case of server crash or restart, which can be a major
disadvantage for some applications.

Limited Data Types

It mainly works with simple key-value data and does not support
other types of data and operations as in Redis.

No Built-in Security Features

Memcached does not have built-in authentication and encryption,
so data protection must be implemented separately, for example,
by connecting to a VPN or using it in a secure network.

Eventual Consistency

Memcached follows an eventually consistent model, which means
data consistency across nodes is not guaranteed immediately,
potentially leading to stale data being read under certain
conditions.

Memory Overhead

Memcached can have significant memory overhead due to
metadata storage and slab allocation, which can reduce the
available memory for actual data storage, especially with small
items.

Document Model (Mongodb)
Strengths

Flexible schema

The flexibility of schema in MongoDB allows adding fields or
changing the structure of documents without predefining a
schema which is useful for applications where data requirements
expand over time.

Atomic operations

At document level, atomic operations in MongoDB is allowed to
ensure complete execution of changes to single documents.

Aggregation framework

The aggregation framework in MongoDB supports processing of
complex data and transformation in database, and the need for
substantial client-side processing is minimized.

Granular permissions

Users’ permissions can be set at any level which includes
databases, collections and the operations of users. This gives
pulverized control on data access.

Replication and sharding

Enhancement of data integrity and availability in MongoDB is
by its built-in replication which is for data redundancy and the
sharding that is for horizontal scaling mechanisms.

Weaknesses
Weak data validation

In MongoDB, the schema validation is different from other
RDBMS as it is not as rigid which means that consistency of data
during creation might be less.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 111

Limited multi-document transactions
Although MongoDB has implemented multi-document
transactions 4.0, but it is not as advanced or efficient as those
offered in traditional RDBMS. This may have an impact on
manipulation of complex data operations including several
documents.

Performance with large datasets
When MongoDB is dealing with large datasets, the performance
of its querying and retrieval might be downgraded if indexing is
not properly done. With proper use of indexing, MongoDB will
perform well that means MongoDB is dependent on indexing.

Default security settings
Data in MongoDB might be left vulnerable if the default security
settings are not changed accordingly. Therefore, it is important to
obey the best practices while securing MongoDB deployments.

Lack of ACID compliance
MongoDB does not provide full ACID compliance over multiple
documents and collections even though it supports several levels
of transaction. This means that data consistency might be affected
in some cases.

Comparison of each Models in Scenario 1
Data Creation

Based on Figure 1, Apache Cassandra and Memcached indicate
the least time taken to import data when the number of rows
increases. This makes them suitable for situations where the
data insertion rate is important. On the other hand, MySQL
and MongoDB demonstrate that the time taken to create data is
moderately higher than in the other databases. While ArangoDB
takes the longest time and thus is not very useful in situations
where data generation is needed in a short time.

In addition, the most suitable database model for a flight booking
system is Apache Cassandra since it has high scalability and
only with minimal impact on creation time. Memcached can
also be incorporated as a caching layer to increase performance.
MongoDB is also a consideration if flexibility in the schema is
a concern. MySQL and ArangoDB are less preferable as data
creation time is relatively slower in case of high load.

Data Manipulation
Update Data Operation

According to Figure 2, when it comes to DBMS for a flight
booking system that needs frequent data updates, some of the
best options are Apache Cassandra, MySQL and ArangoDB that
offer minimal and constant update time that is perfect for high
performance and scalability. Memcached also behaves reasonably
well but it is recommended to be used as a caching layer. However,
for MongoDB, the update times are increasing when rows

increasing, it is not as efficient for scenarios that require frequent
and fast updates. In general, the best performance in managing
real-time data updates is offered by Apache Cassandra, MySQL
and ArangoDB.

Insert Data Operation

Based on Figure 3, MySQL and ArangoDB have the lowest
insertion times across all the tested row size. The insertion time
of Memcached is the highest and constant depending on the
number of entries, thus making it unfit for frequent insertion.
Apache Cassandra and MongoDB exhibit different results; for
Cassandra, the insertion time increases with the number of
rows, while for the MongoDB, the insertion time is high at the
beginning but level off afterward. In a scenario of flight booking
system, where there is a high frequency of insert operations,
MySQL and ArangoDB are the most appropriate since they have
the least insertion time. MySQL may be chosen if the system
uses its strong relational database capabilities, ArangoDB may be
suitable if a more free-form and multi-model DBMS is required.

Delete Data Operation

Figure 4 shows that for a flight booking system that needs to
perform efficient and accurate deletions, Apache Cassandra,
MySQL and ArangoDB are the most suitable because they
have low and fairly stable deletion time even the number of
rows increases. The trend of deletion time in Memcached is
decreasing, which means that though deletion time may have
an initial overhead, it can be managed and used for specific
caching requirements. While MongoDB is not as consistent as
Redis in terms of deletion time, as it has higher initial deletion
time, and is not very constant. Therefore, for reliable and efficient
deletion of data, Cassandra, MySQL and ArangoDB are the most
recommended databases.

Data Retrieval

According to Figure 5, Regarding condition 1, fast retrieval
times are essential for filtering based on the price range and
destination, in which MySQL is in the first place based on the
minimum retrieval time with ArangoDB and Apache Cassandra
close behind. On the other hand, condition 2 involves filtering
by multiple attributes include airline, departure city and arrival
city. Apache Cassandra is the best option in terms of the lowest
retrieval time of 0.0237 sec, it is very effective especially when
it comes to queries that involve many attributes. Thus, although
MySQL is mostly effective, Cassandra is more effective in
specific multi-attribute retrieval cases, thereby stressing on the
necessity of choosing a database model depending on the query
type. While MongoDB retrieval times are higher than MySQL,
ArangoDB and Cassandra but slightly lower than Memcached,
however Memcached has the highest retrieval time among all
the database for both different conditions. Table 4 Shows two
different conditions for the data retrieval purpose.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025112

CPU Usage

Based on Figure 6, distinct performance characteristics of each
database models will be revealed through insert, update and
delete operations. MySQL shows moderate CPU utilization
over all operations, including insert operations at 2.50%, update
operations at 3.20%, and delete operations at 3.10%. This implies
that MySQL has a balanced strategy to allocate resources.
ArangoDB executes no CPU utilization for insert operations,
but more percentages for update operations at 5.90% and delete
operations at 7.10%. This indicates that ArangoDB requires
intensive processing on these operations. Apache Cassandra
shows low CPU usage, including 1.00% for insert operations,
0.40% for update operations and 1.40% for delete operations,
indicating Apache Cassandra’s efficiency on handling these
operations. In the context of Memcached, the CPU utilization is
relatively low for zero usage during insert operations, however,
higher for update operations at 4.40% and delete operations at
4.30%, which show that Memcached is relied on specific caching
mechanisms which its performance over these operations will
be affected. With zero CPU utilization over these operations,
MongoDB stands out with its high efficiency of processing. To
sum up, Figure 6 showed the efficiency of each model during
insert, update and delete operations.

Data Integrity

Among the databases in Figure 7, MySQL consistently performs
well displaying minimal differences between operations with and
without constraints. As an example, at 100 data size, MySQL takes
0.03 seconds with constraints and 0.01 seconds without, hence
indicating high efficiency. On the contrary, MongoDB exhibits
the least performance with constraints. In data size of 10,000,
MongoDB takes 23.47 seconds with constraints compared to 9.76
seconds without constraints that underline a substantial overhead
when constraints are applied. ArangoDB also shows an increase
in time with constraints at higher data sizes, with 7.98 seconds
with constraints and 13.49 seconds without constraints for 10,000
data sizes. Apache Cassandra shows stable performance with
minimal differences between constrained and unconstrained
scenarios which then proves its efficiency to handle constraints
efficiently. In short, MySQL and Apache Cassandra perform
well under constraints whereas MongoDB and ArangoDB face
significant slowdowns as the data size increases.

Scalability
Insert Throughput Comparison

According to Figure 8, ArangoDB’s and Memcached’s insert
throughput excels among the 5 database models. This is due to
their consistent increase in insert throughputs across data size
grows. This is critical as flight booking system requires a lot of

insert operations. For MyS QL and Apache Cassandra, their
insert throughput also increases with data size growth, however,
MySQL and Apache Cassandra could not handle as much insert
operations as ArangoDB and Memcached. For MongoDB, due
to its limited capacity for handling insert operations, its insert
throughputs are significantly low but consistent.

Update Throughput Comparison

Based on Figure 9, although Memcached leads among the other
database model, but there is a significant decrease as data size
grows. In this case, Apache Cassandra shows its consistency in
update throughputs as data size grows. For MySQL, ArangoDB
and MongoDB, their update throughputs decrease across the
growth of data size. Overall, Memcached could possibly be the
optimal model for update throughputs as there is many update
operations in a flight booking system.

Delete Throughput Comparison

Figure 10 shows the differences between the delete throughput
performance of the database models. Memcached excels among
the other database models as it peaks at 108635.68 operations per
second for 10000 data size. Upcoming is the Apache Cassandra
with consistent efficiency even data size is growing. For MySQL,
ArangoDB and MongoDB, they showed a significantly low
efficiency of delete throughputs as compared to Memcached
and Apache Cassandra. Overall, Memcached excels in delete
operations which plays a vital role in a database.

Performance Improvement

Figure 11 shows the difference between baseline performance
and optimized performance for each database models.
Based on Figure 12, the enhancements in different databases
investigated due to various focused enhancements employed for
improving the specific system. MySQL has achieved a 93.25%
performance improvement possibly from better indexing, query
processing and table access. ArangoDB demonstrated a 13.95%
performance improvement indicating that it had been uniquely
optimized beforehand. Apache Cassandra’s 61.79% performance
improvement is likely to arose from the improvement of data
dissemination and indexing techniques. In the case of Memcached,
there is a magnificent improvement of 100.00% as its real caching
in memory, thus eliminating time for data retrieval. MongoDB
achieved a 67.18% performance improvement which is likely to
be attributed to improved indexing techniques, query restricting,
and comprehensiveness in dealing with huge quantities of data.
Such optimizations include improving the indexing process,
rewriting the queries, efficient portioning of data, using cache
mechanisms, improving the physical hardware, and optimal
configuration of hardware which results in efficient access to data
and improved performance of the database.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 113

DISCUSSION

Data Creation

The analysis of the results reveals that there are major differences
in the performance of data creation between different database
models. Thus, the most effective and highly scalable systems are
Memcached and Apache Cassandra as both are used for handling
huge amounts of data which is useful in the flight booking system
scenario where data transactions are frequent and massive. The
higher efficiency of these NoSQL databases indicating that the
traditional relational database such as MySQL may not be as ideal
for high throughput applications, although they are very reliable
with well-defined structures.

This study supports existing literature on the applicability and
effectiveness of the NoSQL databases and especially for the
scenarios that require high performance and fast data processing.
Prior research has shown the benefits of NoSQL databases in
the context of big data technologies Janjua, J. I., et al., (2022),
and the results of this paper support the practical utilization of
NoSQL databases in real-time transactional systems such as flight
booking system. The findings of this research enrich the existing
literature on the context-specific benefits of various databases.

Data Manipulation

From the result of the study, Cassandra, MySQL and ArangoDB
stand out as better suited for handling real-time updates and
demonstrate the best performance in delete operations. MySQL
and ArangoDB are especially suitable because of their relatively
low insertion time. Hence, these results indicate that the selection
of the right database can greatly affect the speed and accuracy
of data manipulation operation, which is essential in real-time
applications such as flight booking systems.

The contribution of this research work to the current knowledge
base is the empirical feature that measures the performance of
the various database in data manipulation activities. Prior studies
have pointed out that NoSQL databases are well suited for massive
transactions Leavitt, N., (2010). We can confirm these claims
with our result especially in the case of MySQL and ArangoDB
excel in insert, update and delete operations. This study also show
that MySQL is still useful in cases where the relational strength is
demanded.

Integrity

As noted in McMinn, P., et al., (2015), the impact of constraints
on performance varies significantly across different systems that
underlines the importance of tailored database strategies. The
study's findings reveal that MySQL outperforms other database
management systems in both constrained and unconstrained
scenarios that proves its superior efficiency to maintain data
integrity while delivering consistent performance.

We have learned that MySQL is highly suitable for applications
requiring extensive data accuracy without compromising speed.
Conversely, MongoDB showed the longest processing times,
particularly under constraints that indicate substantial challenges
to balance data integrity with performance. This performance
degradation suggests that while MongoDB offers flexibility and
scalability, it may not be the ideal choice for applications with
strict data integrity needs. Our study contributes to existing
knowledge by underlining these performance differences and
reinforcing the importance of selecting a DBMS based on specific
requirements.

Query Performance

As applied to the enhancement of database efficiency, this study
has several implications. The degree of performance boost for
the three database models like MySQL, Apache Cassandra and
MongoDB, despite the fact that the degree if tuning as seen from
the query optimization has not been very high in most cases,
targeted optimizations and data distribution have proven to
work very well. From the results, it is evident that with proper
optimization, even matured databases have the potential of
getting a big performance boost, thus enhancing their capability
in terms of real-time processing of ever-growing datasets. The
results also show the effectiveness of in-memory databases such
as Memcached for some cases when data access speed is critical
but at the same time, there is a limitation on the complexity of the
queries to be performed.

This study is based on the literature review, carrying on
research by presenting the experiment-based data on the effects
of optimisation algorithms on a number of relational and
non-relational DBMS. Previous works have been concentrated
in isolated parameters of database performance. However, those
aspects are holistically synthesized in this study as an optimization
approach and demonstrate how synergistic initiatives yield
enhances performance. The study adds to the research finding
done in the past like positive impacts of efficient indexing or
proper allocation of index table Nambiar, R., & Poess, M., (2011).

Scalability

This research sheds some light on an important issue which
is the case of choosing the right DBMS depending on given
performance criteria especially in growth-oriented organizations.
The exceptional performance for insert, update and delete of
Memcached shows that it is very efficient for high throughputs
of data in the applications like the caching system, real-time data
processing applications and large-scale web applications. These
results corroborate the need to determine the peculiarities of
various DBMS choices when it comes to developing systems with
high scalability demands.

Thus, this research completed the existing knowledge stock as it
provides a comparative study of how the DBMS under different

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025114

sized of the data works and operates. Previous work can be
characterized as mainly concentrating the individual parameters
or certain kinds of the databases. This work reveals the and
enlarges the knowledge on how DBMS like MySQL, ArangoDB,
Cassandra, Memcached, and MongoDB perform multiplexer
operation by experimenting numerous operations such as insert,
update and delete. The outcomes are consistent with other studies
that separate Memcached’s effectiveness during high-speed
operations stemming from its in-memory caching framework
and its capacity to scale when facing with large amounts of data
Bermbach, D., Wittern, E., & Tai, S., (2018).

CONCLUSION

In conclusion, based on the analysis, Apache Cassandra emerges
as the most appropriate database model for flight booking system
scenario. It also performs well in terms of the high throughput
operations, which are important in a real-time booking system.
Due to its ability to scale horizontally, have high availability, and
able to handle large amounts of transactions efficiently, Cassandra
is well suited for flight booking system that are dynamic and
complex. Besides that, MySQL and ArangoDB have distinctive
strong performance in certain aspects; however, Cassandra has
a more stable and comprehensive performance in most of the
aspects in handling a large amount of data.

Furthermore, this project has made our team understand the
need to choose the right database that would help in making
the operation of data in a system more efficient. By comparing
performance in different data sizes, it was clear that databases
such as Cassandra and Memcached are very efficient when it
comes to handling large data sets and performance consistency.
This means that the selection of DBMS should depend on the
application needs and the anticipated size of data rather than
going for traditional databases.

Our results also highlighted the significance of optimizing the
functionality of the DBMS to match the application requirements
for enhancing the performance. The study showed that choosing
the right database is crucial for determining the nature and
capabilities of an application. MySQL and ArangoDB were
excellent in certain operations, whereas, Memcached was
excellent in handling huge amounts of data. These insights
underscore the fact that the DBMS decisions should be made
depending on the operational characteristics and data processing
needs of the application for achieving the best performance and
scalability.

Besides that, there are several limitations found in the study. The
performance tests environment was controlled and this implies
that some of the values may differ from a real world environment
where some elements such as network delay, differences in the
user interactions and the workloads may differ. The study mainly
concentrated on the retrieval time while other essential measures
like write time and systems capability under different loads

were not considered. In addition, the hardware and software
environments that might have been used may not be similar to
those that are used in real life by these databases, which reduces
the external validity of the studies. The limitations of the study
were also present in the focus on a particular testing scenarios,
which may not represent all possible cases.

As for the limitations of the current research, future research
should consider the areas that were beyond the scope of this
research. First, studies of databases under real-world conditions
will give a more realistic view of the databases’ behaviour,
taking into account factors such as network delay and varying
load. Furthermore, it is important to investigate the efficiency
of optimization techniques that are applied to specific kinds of
databases because each DBMS has its strengths and weaknesses
as well as specific critical points. In addition, implementing
machine learning algorithms that can predict data quality and
its optimal conditions in real-time can improve the quality and
reliability of databases under different circumstances. These areas
will be addressed to eliminate the current study’s drawbacks and
gain more profound insights into the best practices in database
optimization.

Group member contributions
Student Name
(ID)

Percentage of
contribution in each
section (1-5)

Percentage
of the overall
participation

Chan Pui Ying
21041546

1 (35%), 2 (20%),
3 (35%), 4 (5%),
5 (5%)

100%

Joselyn Chin Shi
Min
22049126

1 (10%), 2 (20%),
3 (10%), 4 (30%),
5 (30%)

100%

Gan Yi Jean
22041321

1 (35%), 2 (20%),
3 (35%), 4 (5%),
5 (5%)

100%

Leong Zheng
Xuan
21026976

1 (10%), 2 (20%),
3 (10%), 4 (30%),
5 (30%)

100%

Nurjiha Natasha
Binti Md Rafi
21054804

1 (10%), 2 (20%),
3 (10%), 4 (30%),
5 (30%)

100%

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ABBREVIATIONS

RDBMS: Relational Database Management System; SQL:
Structured Query Language; NoSQL: Non-Structured Query
Language (used informally to describe non-relational databases);

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 115

ETL: Extract, Transform, Load; ACLs: Access Control Lists;
JSON: JavaScript Object Notation.

SUMMARY

This paper conducts a comparative analysis of relational and
non-relational database models using a case study of a travel
booking system. It highlights the evolution from traditional
RDBMS like MySQL, which offer structured storage and
strong integrity constraints, to NoSQL alternatives such as
ArangoDB, Cassandra, Memcached, and MongoDB that provide
greater flexibility and scalability for unstructured and big data
environments. The study evaluates the two database paradigms
across five dimensions: data creation, manipulation, retrieval,
access control, and integrity. Findings suggest that while
relational databases are suited for consistency and structured
data, NoSQL databases offer performance advantages and
adaptability in dynamic and large-scale data applications. The
insights are particularly valuable for system architects and IT
decision-makers aiming to select the optimal database model for
modern applications.

REFERENCES
Alflahi, E., Mohammed, M. A. Y., & Alsammani, A. (2023). Enhancement of database access

performance by improving data consistency in a non-relational database system
(NoSQL). arXiv.org. https://arxiv.org/abs/2308.13921

Bansal, S. K., & Kagemann, S. (2015). Integrating big data: A semantic extract-transform-
load framework. https://keep.lib.asu.edu/items/129150. Computer, 48(3), 42–50. htt
ps://doi.org/10.1109/MC.2015.76

Bermbach, D., Wittern, E., & Tai, S. (2018). Cloud service benchmarking: Measuring quality
of cloud services from a client perspective. Springer.

Blansit, B. D. (2006). The basics of relational databases using MySQL. Journal of
Electronic Resources in Medical Libraries, 3(3), 135–148. https://doi.org/10.1300/J3
83v03n03_10

Callan, J. (2005). Distributed information retrieval. In (pp. 127–150) Kluwer Academic
Publishers eBooks. https://doi.org/10.1007/0-306-47019-5_5

Cassandra – Create table. https://www.tutorialspoint.com/cassandra/cassandra_cre
ate_table.htm

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4), 12–27.
https://doi.org/10.1145/1978915.1978919

Chen, J.-K., & Lee, W.-Z. (2019). An introduction of NoSQL databases based on their
categories and application industries. https://www.semanticscholar.org/paper/
An-Introduction-of-NoSQL-Databases-Based-on-Their-Chen-Lee/d558abb388590f3
db13969a790e002617c8844b7. Algorithms, 12(5). https://doi.org/10.3390/a120501
06

Create a user – MongoDB manual v7.0. https://www.mongodb.com/docs/manual/tu
torial/create-users/#std-label-create-users

Create KEYSPACE | CQL for cassandra 3.0. https://docs.datastax.com/en/cql-oss/3.3/c
ql/cql_reference/cqlCreateKeyspace.html

Create role | CQL for cassandra 3.0. https://docs.datastax.com/en/cql-oss/3.3/cql/cql
_reference/cqlCreateRole.html

Daugirdas, D., & Zatorskis, J. (2023). Creation of the database prototype. https://ww
w.semanticscholar.org/paper/Creation-of-the-database-prototype-Daugirdas-Zator
skis/25f5caef14ccca97cf8a2dba14bc9f7b1286f874

Documents – MongoDB manual v7.0. https://www.mongodb.com/docs/manual/co
re/document/#insert

Elmasri, R., & Navathe, S. (2013). Fundamentals of database systems.

GeeksforGeeks. (2022). Key-value data model in NoSQL. https://www.geeksforgeeks.
org/key-value-data-model-in-nosql/

Giamas. (2019). Mastering MongoDB 4. x: Expert techniques to run high volume and
fault-tolerant database solutions using MongoDB (2nd ed.), 4 p. x. Packt Publishing
Ltd.

Győrödi, C. A., Dumşe-Burescu, D. V., Győrödi, R. Ş., Zmaranda, D. R., Bandici, L., &
Popescu, D. E. (2021). Performance impact of optimization methods on MySQL
document-based and relational databases. Applied Sciences, 11(15), 6794. https://
doi.org/10.3390/app11156794

Janjua, J. I., Khan, T. A., Zulfiqar, S., & Usman, M. Q. (2022). An architecture of MySQL
storage engines to increase the resource utilization. https://doi.org/10.1109/balkan
com55633.2022.9900616

Kunda, D., & Phiri, H. (2017). Comparative study of NoSQL and Relational database. Zambia
ICT Journal, 1(1), 1–4. https://doi.org/10.33260/zictjournal.v1i1.8

Leavitt, N. (2010). Will NoSQL databases live up to their promise? Computer, 43(2), 12–14.
https://doi.org/10.1109/MC.2010.58

Mcminn, P., Wright, C. J., & Kapfhammer, G. M. (2015). The effectiveness of test
coverage criteria for relational database schema integrity constraints. ACM
Transactions on Software Engineering and Methodology, 25(1), 1–49. https://doi.o
rg/10.1145/2818639

Mongo, D. B. MongoDB CRUD operations. https://www.mongodb.com/resources/pr
oducts/fundamentals/crud

MongoDB CRUD operations – MongoDB manual v7.0. https://www.mongodb.com/
docs/manual/crud/#delete

Multi model – ArangoDB. (2024). https://arangodb.com/multi-model/
Nambiar, R., & Poess, M. (2011). Performance evaluation and benchmarking: Second TPC

Technology Conference, TPCTC 2010. Springer.
Parate, R. (2023). NoSQL Databases: Facebook case study and Analysis. https://

www.semanticscholar.org/paper/NoSQL-Databases%3A-Facebook-Case-study-
and-Analysis-Parate/4de2d4ae44268dadd1005bdad12270fa880e08f6

Petković, M., & Jonker, W. (2007). Security, privacy, and trust in modern data
management. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69861
-6

‘Performance Benchmarking and Comparison of NoSQL Databases: Redis vs
MongoDB vs Cassandra Using YCSB Tool.’ Seghier, N.B., and Kazar, O. (2021).
Select. CQL for Cassandra 3.0.” https://www.semanticscholar.org/paper/
Performance-Benchmarking-and-Comparison-of-NoSQL-vs-Seghier-Kazar/89f523f1
5ec7744c8df204efbeb0fbf1262b2ca7. https://docs.datastax.com/en/cql-oss/3.3/cql
/cql_reference/cqlSelect.html

Samarati, P., & De Vimercati, S. C. (2001). Access control: Policies, models, and
mechanisms. Lecture Notes in Computer Science, 137–196. https://doi.org/10.1007
/3-540-45608-2_3

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system concepts. McGraw-Hill
Education.

Sug, H. (2020). A method for normalization of relation schema based on data to
abide by the third normal form. https://www.semanticscholar.org/paper/
A-Method-for-Normalization-of-Relation-Schema-Based-Sug/e4ac40b7355761c069
4334f30fb97d7cdd1b2a0a. Update | CQL for Cassandra 3.0.” https://docs.datastax.co
m/en/cql-oss/3.3/cql/cql_reference/cqlUpdate.html, 19, 216–225. https://doi.org/10
.37394/23206.2020.19.20

Update documents – MongoDB manual v7.0. https://www.mongodb.com/docs/ma
nual/tutorial/update-documents/

Walke, D., Micheel, D., Schallert, K., Muth, T., Broneske, D., Saake, G., & Heyer, R. (2023).
The importance of graph databases and graph learning for clinical applications
[Database]. Database, 2023, Article baad045. https://doi.org/10.1093/database/baa
d045

Wang, X., Wu, W., Wu, J., Chen, Y., Zrymiak, N., Qu, C., Flokas, L., Chow, G., Wang, J.,
Wang, T., Wu, E., & Zhou, Q. (2022). ConnectorX: Accelerating data loading from
databases to dataframes. https://www.semanticscholar.org/paper/ConnectorX%
3A-Accelerating-Data-Loading-From-to-Wang-Wu/2118fc6dcb70cac36c783800a4e
5487899102476. Proceedings of the VLDB Endowment, 15(11), 2994–3003. https://d
oi.org/10.14778/3551793.3551847

What is data integrity and why does it matter? (2021). Business insights blog, February 04.
https://online.hbs.edu/blog/post/what-is-data-integrity

Zaniewicz, N., & Salamończyk, A. (2022). Comparison of MongoDB, Neo4j and
ArangoDB databases using the developed data generator for NoSQL databases.
https : / /w w w.semant icscholar.org/paper/Compar ison- of -M ongoDB%
2C-Neo4j-and-ArangoDB-databases-Zaniewicz-Salamo%C5%84czyk/64f5b93e03
20c46544b12f838df3413c5a682d38. Studia Informatica. System and Information
Technology, 26(1), 61–72. https://doi.org/10.34739/si.2022.26.04

Cite this article: Ying CP, Min JCS, Jean GY, Xuan LZ, Rafi NNB, Sathishkumar VE, et al. Comparative Analysis of Relational and Non-Relational Database
Models: A Case Study on Travel Booking Systems. Info Res Com. 2025;2(1):98-119.

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025116

Data creation
MySQL

Arango DB

Apache Cassandra

Memcached

MongoDB

Data Manipulation
MySQL
Update

Insert

Delete

ArangoDB
Insert

Update

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 117

Delete

Apache Cassandra
Insert

Update

Delete

Memcached
Insert, update delete

MongoDB
Insert

Update

Delete

Data Retrieval
MySQL

ArangoDB

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025118

Apache Cassandra

Memcached

MongoDB

CPU usage

MySQL

ArangoDB

Apache Cassandra

Memcached

MongoDB

Data Integrity
MySQL

ArangoDB

Apache Cassandra

Ying, et al.: Comparative Analysis of Database Models in Travel Systems

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 119

MongoDB

Scalability
MySQL

ArangoDB

Apache Cassandra

Memcached

MongoDB

Performance Improvement
MySQL

ArangoDB

Apache Cassandra

Memcached

MongoDB

