
Information Research Communications, 2025; 2(1):47-70.
https://inforescom.org Research Article

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 47

DOI: 10.5530/irc.2.1.5

Copyright Information :

Copyright Author (s) 2025 Distributed under

Creative Commons CC-BY 4.0

Publishing Partner : ScienScript Digital. [www.scienscript.com.sg]

Comparative Analysis of SQL and NoSQL Databases: Data
Models, Use Cases, and Performance Insights
Dionne Teh Wooi Ying1, Choo Yan Jie1, Cheah Shaoren1, Hong Chang Eui1, Chin Wey Ken1,
Sathishkumar Veerappampalayam Easwaramoorthy1,*, Usha Moorthy2

1School of Computing and Artificial Intelligence, Faculty of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, Selangor Darul Ehsan, MALAYSIA.
2Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal,
Karnataka, INDIA.

ABSTRACT
Aim/Background: The primary aim of this study is to conduct a comparative analysis of SQL
and NoSQL databases based on their data models, performance characteristics, and suitability
for various application scenarios. It specifically investigates relational, key-value, graph,
document, and wide-column models, focusing on their operational implications, such as data
integrity, query performance, scalability, and security. Methodology: This research adopted
a mixed-methods approach, combining qualitative and quantitative evaluations. It involved
literature review, official DBMS documentation, and performance benchmarking. The study
utilized five DBMSs-Oracle (SQL), Neo4j (graph), Cassandra (wide-column), Redis (key-value), and
MongoDB (document). Performance metrics like data creation, manipulation, retrieval, access
control, and data integrity were analyzed. Scenario-based analyses (e-commerce and social
media analytics platforms) were used to examine database suitability under different real-world
conditions. Results: The results indicated that NoSQL databases generally outperformed SQL
databases in terms of scalability, data flexibility, and runtime performance, especially under
large-scale data operations. SQL databases like Oracle demonstrated strong data integrity and
complex querying capabilities but lagged in scalability and schema flexibility. NoSQL databases
like MongoDB and Neo4j provided ACID compliance with dynamic schemas, while Redis and
Cassandra excelled in high-speed data operations with eventual consistency. Scenario analysis
confirmed the contextual suitability of each model. Discussion: While NoSQL databases offer
superior performance for unstructured data and scalable applications, SQL databases remain
indispensable for structured, transaction-heavy systems due to their robust consistency and
integrity mechanisms. The preference for a database model depends heavily on application
context, data structure, and performance requirements. The findings highlight that no single
model is universally superior; rather, optimal selection depends on the specific use case.
Conclusion: The study concludes that both SQL and NoSQL databases have distinct strengths
and weaknesses. SQL databases are best suited for structured, transactional systems, whereas
NoSQL models are ideal for modern, data-intensive, and scalable applications. Organizations
should evaluate their specific data requirements and system demands when selecting an
appropriate database solution.

Keywords: SQL, NoSQL, Oracle, Cassandra, Redis, Neo4j, MongoDB, Relational model, Key-value
model, Graph model, Wide-column model, Document model.

INTRODUCTION

Modern systems and applications are evidently reliant on
data. This raises the importance of implementing efficient and
effective database as there is a vast amount of information to
be managed and analyzed. There are two main database types:

SQL (Structured Query Language) and NoSQL (Not Only SQL).
SQL databases, which are characterized by their relational model
and adherence to ACID (Atomicity, Consistency, Isolation and
Durability) properties, excel in handling structured data with
complex relationships and transactions. Conversely, NoSQL
databases offer flexibility and scalability for unstructured and
semi-structured data which is suitable for modern applications
with dynamic and varied data needs. NoSQL databases come in a
plethora of models including key-value, document, wide column,
and graph. Deciding between a SQL database and the various
types of NoSQL database is a critical decision to organizations

Received: 07-02-2025;
Revised: 28-03-2025;
Accepted: 19-05-2025.

Correspondence:
Dr. Sathishkumar Veerappampalayam
Easwaramoorthy
School of Computing and Artificial
Intelligence, Faculty of Engineering and
Technology, Sunway University, No. 5,
Jalan Universiti, Bandar Sunway, 47500
Selangor Darul Ehsan, MALAYSIA.
Email: sathishv@sunway.edu.my

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202548

as it brings an impact on performance, scalability, and data
management strategies.

Goals

The aim of this report is to analyse and compare SQL and NoSQL
databases from multiple aspects by answering 3 questions:

	 •	 What is the fundamental difference between SQL and
NoSQL databases?

	 •	 How do SQL and different types of NoSQL databases
differ in terms of data creation, manipulation, integrity,
retrieval and access control across different use cases?

	 •	 In certain scenarios, what factors are preferred to
NoSQL databases over SQL databases?

The first is to explore the fundamental differences between SQL
and NoSQL databases. This includes analysing the underlying
principles, structure, and data models. Next, we will investigate
how SQL and different types of NoSQL databases differ in terms
of data creation, manipulation, integrity, retrieval and access
control. For comparison, we will discuss the differences between
the two database types in detail through two scenario cases, which
is e-commerce and social media analytics platform, and discuss
in which situations each database is more appropriate. Lastly, we
want to discover the factors that favor NoSQL databases over SQL
databases in certain scenarios. This will be useful for identifying
situations where NoSQL can be more advantageous than SQL
databases.

Importance of databases and importance of
reporting

In modern information systems, databases play a critical role.
Beyond just storing data, databases help various applications or
systems operate smoothly by providing functions such as search,
management, modification, and deletion. Because each database
has its own advantages and disadvantages, it is important to
choose according to its purpose and environment.

Our findings can be utilised by database administrators and
developers to guarantee effective data management and optimize
database systems. Additionally, it may help others in designing
and implementing suitable database solutions catered to a variety

of business demands by knowing the advantages and traits of
NoSQL and SQL databases, respectively.

This report will take a quantitative and qualitative approach to
compare the performance of SQL and NoSQL databases. Our main
goal will be to comprehend database management concepts in a
variety of contexts and to identify practical variations by applying
current theories and models. Next, we will set up two real-world
applications to assess each database model's performance based
on its advantages and disadvantages. This paper will aim to offer
a clear foundation for comprehending the distinctions between
NoSQL and SQL databases based on the findings.

LITERATURE REVIEW

A data model is a conceptual framework that describes how
data would be structured, stored, and manipulated within a
database. Data models are generally represented using various
notations. SQL, or relational databases, is represented through
Entity-Relationship (ER) diagrams. NoSQL databases have
various representations: key-value models are often depicted with
keys and values, graph models use nodes and edges to represent
relationships, document models display hierarchical structures
of data, and wide column models organize data into tables with
rows having a variable number of columns, grouped into column
families. Data models are integral to logical database design as they
determine the schema and constraints that ensure data integrity
and consistency. They also influence physical implementation
by dictating how data is stored and accessed on hardware,
affecting performance, scalability, and storage efficiency. Thus, a
well-defined data model bridges the gap between conceptual data
requirements and practical database architecture, guiding the
development and optimization of database systems.

Oracle (Relational Model)

Oracle is a famous example of SQL database that can efficiently
manage and process large amounts of data using relational
database models. In short, this means that the data is stored
in tables that resemble spreadsheets. These tables have rows
and columns. Each row is a record, such as a single entry in a
spreadsheet, and each column is a property that describes the
record, such as "name" or "date" (https://www.oracle.com/datab
ase/what-is-a-relational-database/).

Data Creation

To begin creating data in Oracle, the first step is to create tables
and then add data to them. You use the command CREATE
TABLE, literally, to create a table.

Now, the command in Figure 1 makes a table with columns for
hero ID, hero name, power, and origin date. To add data to this
table, use the command INSERT INTO as shown in Figures 2
and 3.Figure 1: Create Table in Oracle.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 49

Data Manipulation

To change data which already exists in the table, use the command

UPDATE as shown in Figure 4.

This time, use the DELETE command to remove the data as
shown in Figure 5.

Data Retrieval

Getting data out of the database is done with the SELECT
command.

The command in Figure 6 shows the names and powers of
superheroes that started after January 1, 1940. Sometimes, you
need to get data from more than one table. This is done by joining
tables.

The command in Figure 7 gets the hero names, powers, and their
team names.

Access Control

Oracle lets you create users and give them specific permissions.
First you create a user to grant access to as shown in Figures 8
and 9.

Oracle also uses roles to manage permissions more easily. A role
is a collection of permissions that you can assign to users. Instead
of granting each user access one by one, you can create a role that
is granted with multiple accesses and then grant the role to users
like in Figure 10. Roles makes it easier to manage permissions as
you only need to update the permissions of the role and all users
with the role will have updated permissions.

Data Integrity

Ensuring that data within a database remains accurate and
consistent is called data integrity. Oracle uses several key
mechanisms to maintain this feature.

The primary key ensures that each table's record is unique,
preventing duplicate entries. Foreign keys maintain relationships
between tables and ensure that values in one table match valid
entries in another. A unique constraint ensures that all values
in the column are different, and a check constraint ensures that
the values in a column meet certain conditions (https://docs.or
acle.com/cd/E18283_01/server.112/e16508/datainte.htm). For
example, you can set conditions to ensure that a date is in the
past, and so on.

In addition, the Not Null constraint does not allow NULL values
in columns, so that all items have values. The Default constraint
loads default values in columns when no values are specified.

Oracle also has a transaction feature which is able to maintain
data integrity. When commands are executed in a transaction,
all commands must execute without any failures to commit
the transaction. If in any command in the transaction fails, the
entire transaction will roll back and no changes will be made
to the database. This ensures that the database is consistent
and only updates if all the intended commands are executed.
This mechanism ensures the reliability of the data stored in

Figure 2: Insert Data in Oracle.

Figure 3: Insert Multiple Data in Oracle.

Figure 4: Update Data in Oracle.

Figure 5: Delete Data in Oracle.

Figure 6: Select Data in Oracle.

Figure 7: Select Data With Condition in Oracle.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202550

the database and preserves consistency to prevent errors and
maintain the integrity of the information (https://docs.oracle.co
m/cd/B14117_01/server.101/b10743/transact.htm).

Neo4j (Graph Model)

The graph model stores information in nodes that are
connected by relationships (https://neo4j.com/docs/
getting-started/appendix/graphdb-concepts/; https://www.ibm.
com/topics/nosql-databases). This model is made up of several
components that share the same characteristics from relational
databases (Table 1).

Neo4j, a leading NoSQL DBMS that utilizes graph model, is a
prime example to illustrate the characteristics of this model.
However, it uses a more advanced database model called
property graph database model, where the relationships are not
only connections but also carries a name and properties (Figure
11) (https://www.dataversity.net/what-is-a-property-graph). The
properties are stored in key-value pairs used to describe nodes
and relationships.

Data Creation

The data is stored as a true graph model from the top to the
storage level as Neo4j is a native graph database. Each node is
connected with relationships to form a complex graph network
in a more flexible approach, optimizing data traversal to process
complex relationships among data.

Neo4j uses their own declarative query language, Cypher, where
it is similar to SQL but more efficient by supporting expressive
queries to explore unknown data connections and clusters in
the graph model (https://neo4j.com/docs/cypher-manual/cu
rrent/introduction/cypher-overview/). In the context of data
creation, Neo4j populates the database by defining the nodes
and their relationships using Cypher in ascii-art type of syntax
(https://neo4j.com/docs/cypher-manual/current/introduction/
cypher-overview/).

(nodes)-[:CONNECT_TO]→(otherNodes)

Unlike traditional relational databases, the graph model in Neo4j
is schema-flexible, meaning that it offers a greater degree of
flexibility as each node or relationship does not have a specific
property defined (https://neo4j.com/docs/cypher-manual/curren
t/introduction/cypher-overview/). Thus, it typically does involve
schema implementation which creates a fixed structure of tables
to store data as compared to SQL databases (Figure 12). Users
can add new attributes and relationships as the graph expands
and evolves.

Data Manipulation

Data manipulation is also achievable through the use of Cypher by
using syntaxes like SET and DELETE to manipulate the property
or relationships of nodes. Unlike SQL databases, it does not have
a fix schema which uses the MATCH syntax to determine the
node to be manipulated in the graph network by using pattern
matching (Figures 13-15).

Within the property graph model database of Neo4j, data
manipulation is almost similar to SQL. However, Neo4j’s
schema is much more flexible. When deleting nodes, its
related relationships are detached from other nodes to ensure
data accuracy and integrity. This flexibility allows the graph
schema to adapt over time and changes to add or remove new
relationships according to the user needs (https://neo4j.com/doc
s/getting-started/get-started-with-neo4j/graph-database/).

Data Retrieval

Neo4j also supports CRUD operations with the use of Cypher.
The data in the property graph model can be retrieved by using
the MATCH syntax to identify nodes with the corresponding
properties in both the nodes and relationships.

For example, the query in Figure 16. Finds all Person nodes
labelled as Actor connected through ACTED_IN relationships to
Movie nodes, which are in turn connected through DIRECTED
relationships to other Person nodes (Figure 16). The RETURN
clause then displays these matched nodes and relationships. By
using this method, data retrieval is dynamic and highly flexible
by specifying the patterns of nodes and relationships to efficiently
traverse the graph and access interconnected data.

Access Control

In the context of access control, Neo4j has built-in native
authentication and authorization (Table 2). It contains features
that stores user and role information in the system database
for authentication purposes and manages authorization using
Role-Based Access Control (RBAC) (https://neo4j.com/docs/
operations-manual/current/authentication-authorization/). The
RBAC method assigns privileges to roles then assigned to users,
limiting their actions on the database. This can be done in Neo4j
by using Cypher to modify the access rights to users. Neo4j also

Figure 8: Create User in Oracle.

Figure 9: Grant Access in Oracle.

Figure 10: Create Role and Assign Role to User in Oracle.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 51

contains built-in roles and privileges that can be modified to suit
the user's needs.

Data Integrity

Despite being a type of NoSQL database that utilizes a graph
model, Neo4j can ensure data integrity by being fully ACID
compliant (https://neo4j.com/docs/operations-manual/current/
database-internals/). This is achieved via write-ahead transaction
log to ensure durability, where it keeps track of all write operations
to ensure data consistency and enable recovery (https://neo
4j.com/docs/operations-manual/current/database-internals/
transaction-logs/). The transactions performed in Neo4j are
atomic, where any operations will be rolled back if any part fails
resulting in no changes to the databases to maintain consistency.
Neo4j only allows default read-committed isolation level where
data can only be read when it is committed by other transactions

in a complete state. It also provides optional write locks to provide
isolation by preventing other transactions from affecting data
that the user is working with. Lastly, durability is ensured with
built-in deadlock detection and robust transaction management,
making committed transactions permanently stored and
recoverable (https://neo4j.com/docs/operations-manual/current
/database-internals/transaction-logs/).

Cassandra (Wide Column Model)

The wide column model organizes data into columns rather than
rows. This data model is particularly well-suited for handling
large volumes of structured data and offers flexibility in how data
can be stored and accessed. Unlike traditional relational models,
where each row has a fixed set of columns, wide column databases
allow each row to contain a different number of columns like in
Figure 17. This feature provides the ability to store sparse data
efficiently. Hence, the model excels in scenarios that require high
write throughput and the ability to perform complex queries on
large datasets (https://www.scylladb.com/glossary/wide-column-
database/).

Cassandra is a distributed database system designed to manage
large volumes of data for low-cost servers. It is the top choice
for wide column database because it ensures high availability
without a single point of failure (https://www.datastax.com/guid
es/what-is-cassandra). Cassandra architecture runs on masterless
and peer-to-peer model where any node can handle any request.
This allows the system to scale horizontally while maintaining
consistent performance under a heavy load. Cassandra is
well-suited for applications that require high reliability and
robustness because of the data replication and fault tolerance (htt
ps://cassandra.apache.org/_/index.html).

Cassandra Query Language (CQL) is the main tool to interact
with Cassandra. It is easier to use for those familiar with relational
databases as it has similar syntax to SQL. CQL has structured
language to define keyspaces, column families and the data types
to accommodate the unique aspects and constraints (https://docs
.datastax.com/en/cql/hcd-1.0/overview/cql-about.html).

Data Creation

In Cassandra, data is stored in structures known as keyspaces,
similar to databases in relational models. Each keyspace contains

Component Functionality
Node Represent entities in a domain and can have

zero or more labels to define their type.
Label Classify nodes by defining their type.
Relationship Describe connections between nodes, have a

direction, and must have a type to classify the
connection.

Table 1: Components in graph model (https://neo4j.com/docs/
getting-started/appendix/graphdb-concepts/).

Figure 11: Example of Property Graph Database Model in Neo4j (https
://neo4j.com/docs/getting-started/appendix/graphdb-concepts/).

Figure 12: Data Creation in Neo4j.

Figure 13: Update Property in Neo4j.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202552

multiple column families, which are analogous to tables (https://
docs.datastax.com/en/cql/hcd-1.0/overview/cassandra-structure
.html). However, unlike traditional tables, each row in a column
family can have a different set of columns. Data creation involves
defining a keyspace and its associated column families, specifying
the primary key and clustering columns that determine data
retrieval order as shown in Figures 18 and 19.

Data Manipulation

Cassandra supports various data manipulation operations,
including inserting, updating, and deleting data. The INSERT
statement is used to add new rows, the UPDATE statement
modifies existing rows and the DELETE statement removes

rows or specific columns within a row (Figures 20-22). Data
manipulation is schema-less, allowing each row to have unique
columns.

Data Retrieval

Data retrieval in Cassandra is highly efficient due to its
partitioning and clustering keys. For example, the query in Figure
23 allows users to query data based on the primary key using the
SELECT statement. Complex queries are supported, including
range queries and filtering using secondary indexes.

Access Control

Cassandra uses RBAC to manage permissions. It allows
administrators to define roles with specific permissions and assign
them to users. This ensures secure data access and operation
controls within the database environment (https://www.datastax.
com/blog/role-based-access-control-cassandra).

For example, the query in Figure 24 creates a role ‘ecommerce_
user’ and the query in Figure 25 grants access to select, insert and
update on the customers table to it.

Data Integrity

Cassandra ensures data integrity through several mechanisms,
including consistency levels, write-ahead logging, and tunable
consistency. Users can configure consistency levels for reads
and writes, balancing between consistency and availability. The
database supports eventual consistency, ensuring that all replicas
converge to the same state over time (https://docs.datastax.com
/en/cassandra-oss/3.x/cassandra/dml/dmlAboutDataConsistenc
y.html).

For example, the query in Figure 26 sets the consistency level to
QUORUM, meaning that a majority of replicas must agree on the
value for it to be returned or written.

Redis (Key-value Model)

A key-value database stores each data in a simple pair of key and
value. The key is a simple string that is unique, followed by the
value which could be an arbitrary large data field of any scalar
data types (integers, strings, JSON, BLOB etc.,). A hash table
keeps track of the unique keys and links it to the corresponding
data value with pointers.

Figure 14: Remove Property in Neo4j.

Figure 15: Delete Node and Relationship in Neo4j.

Figure 16: Data Retrieval in Neo4j.

Role Privileges
PUBLIC Access to the home database for executing

procedures, user-defined functions, and loading
data.

reader Access to all databases for reading data and
viewing schema constructs.

editor Access to all databases for reading and writing
data, with limited schema modification
permissions.

publisher Access to all databases for reading and writing data
and viewing schema constructs.

architect Access to all databases for reading, writing, and
managing schema constructs.

admin Full access to all databases for managing
data, schema, and privileges, and executing
administrative procedures.

Table 2: Built-in Roles in Neo4J (https://neo4j.com/docs/cypher-manual/
current/introduction/cypher-overview/).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 53

To search for a record, you can only query and search the key,
not the value. Referring to Figure 27 as example, when you
query “Paul” (key), you get the phone number (value) associated
with “Paul”, which is “(091) 9786453778”. There is also no query
language in key-value databases. In contrast to relational databases
that uses SQL (Structured Query Language) to perform complex
operations like joining multiple tables, key-pair database does not
support querying languages (https://redis.io/nosql/key-value-dat
abases/).

Redis, which stands for Remote Dictionary Server, is a key-value
store that excels in speed and efficiency. This is because it operates
in memory instead of on a disk or Solid-State Drive (SSD), making
it exceptionally fast for read and write operations (https://www.ib
m.com/topics/redis). Redis also supports various data structures,
including strings, hashes, lists, sets, and sorted sets, which adds
flexibility in how data can be stored and manipulated (https://red
is.io/docs/latest/develop/data-types/).

Data Creation
Data creation in Redis involves adding key-value pairs to the
database. This can be done using the SET command in Redis as
shown in Figure 28 and Table 3.

In Figure 29, SET mykey “Hello” means to create a key named
“mykey” and associate it with the value of “Hello”. If the key

previously has a value, using SET on the key will overwrite the
previous record (https://redis.io/docs/latest/commands/set/).

In Figure 30, the MSET command allows user to set multiple
key-value pairs in one command. The MSET will overwrite the
previous value of the key, similar to SET.

Data Manipulation

To update the value of a key, use SET and it will overwrite
the previous value stored. To delete a key in Redis, the DEL
command is used. If the key does not exist, the command will be
ignored. The DEL command can also delete multiple keys in one
command (https://redis.io/docs/latest/commands/del/).

In Figure 31, “key1” and “key2” were deleted. “key3” does not
exist; hence, it was ignored and not deleted. The returned integer
indicates the number of keys that were removed from the
database.

Data Retrieval

The GET command is used to fetch the value stored at a key as
shown in Figure 32. If the key does not exist, nil will be returned.
However, GET command can only return the value if it is a string
(https://redis.io/docs/latest/commands/get/).

Figure 17: Structure of Wide Column Database (https://www.scylladb.com/glossary/wide-column-database/).

Figure 18: Create Keyspace in Cassandra.

Figure 19: Create Table in Cassandra.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202554

Access Control
When a database is created, users have full access to the database
as unauthenticated access is selected by default. There are
three access methods: unauthenticated access, password-only
authentication, and using ACL only (https://redis.io/docs/latest
/commands/get/).

In Figure 33, unauthenticated access would mean anyone could
access the database without any credentials; password-only
authentication would require users to authenticate with their
configured password using the AUTH command; using ACL only
would require users to set up RBAC with Access Control Lists
(ACLs).

Role-Based Access Control (RBAC)
Redis has RBAC to manage users’ access privileges. The RBAC
allows creation of roles and definition of each role’s access
privileges. It also allows creation of users then assigning roles to
them.

Cluster Access vs Database Access
In Redis there are two types of access:

Cluster access: allows performing management-related actions
(create database, view statistics).

Database access: allows performing data-related actions (read
and write data).

Each role can be granted either or both accesses. This is useful to
manage and control who can access the databases and who can
access cluster management for security purposes.

Data Integrity

Data integrity in Redis is maintained through its atomic
operations. Commands like SET and DEL are atomic, where they
either complete fully or not at all. Additionally, Redis supports
transactions through the use of the MULTI and EXEC commands,
which allow multiple commands to be executed as a single atomic
operation. Using WATCH could also provide a Check-and-Set
(CAS) behaviour. Keys that have the WATCH command will be
monitored to check for any changes. If any WATCH-ed keys are
modified before the EXEC command, the whole transaction will
be aborted to prevent race condition (https://redis.io/docs/latest/
develop/interact/transactions/).

If the code in Figure 34 is run by multiple clients at the same time,
the mykey value would be incremented at the same time and
affect data integrity. By WATCH-ing mykey, if another client tries
to modify the result of val in time between the call to WATCH
and EXEC, the transaction will fail.

MongoDB (Document Model)

In a document model, data is stored in documents in various
formats such as JSON, BSON and XML. These documents can

Figure 20: Insert Data in Cassandra.

Figure 21: Update Data in Cassandra.

Figure 22: Delete Data in Cassandra.

Figure 23: Data Retrieval in Cassandra.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 55

have varying structures and flexible schemas and are able to
contain

To showcase how data is created and manipulated in a document
model, we will utilize MongoDB as an example with the queries
being executed through MongoDB Shell or mongosh. Mongosh
is a JavaScript and Node.js environment for interacting with
MongoDB databases and can be used to test queries or interact with
the database (https://www.mongodb.com/docs/mongodb-shell/).
However, not all document databases may use the same syntax or
queries in their creation or manipulation of data.

Data Creation

In the case of MongoDB, in order to store data, we first have
to create a database and a collection. Documents which store
the data are gathered together in a collection while a database
stores one or more collections or documents. In the context of
a relational database, a collection can be compared to a table. In
order to create a database, we can utilize the insertOne() method
as shown as Figure 35. If the target database and collection
does not exist, it will automatically create a new database and
collection. The code below demonstrates how to create a database
with the name “mynewDB” and a collection with the name
“myNewCollection1” (https://www.mongodb.com/docs/manu
al/core/databases-and-collections/). Alternatively, the user can
utilize the createCollection() method to create a collection with
various options.

In order to insert data into the collection or insert a document,
we can use the insertOne() and insertMany() methods. The
insertOne() inserts a single document while insertMany() inserts
multiple documents into the collection. It is also important to note
that if the user does not specify the _id that acts as a primary key,
MongoDB will automatically generate an object for the _id field.

Figures 36 and 37 are examples on how to utilize the insertOne()
and insertMany() method (https://www.mongodb.com/docs/ma
nual/tutorial/insert-documents/).

Data Manipulation

To update the document, there are 3 methods available to the
user. They can utilize the updateOne(), updateMany() and
replaceOne() methods. The updateOne() method is used to
update the first document where the condition is met whereas
updateMany() updates all the documents. The replaceOne()
method is used to replace the entire content of a document except
for the _id primary key. Figures 38-40 demonstrate how to utilize
all 3 methods.

For delete operations, you can utilize the deleteOne() and
deleteMany() methods (Figures 41 and 42). The deleteOne()
and deleteMany() methods work similarly to the updateOne and
updateMany() methods.

Data Retrieval

Moving on to read operations, we can use the find() method. The
find() method also supports the typical ‘or’ and ‘and’ conditions
that we normally use in a relational database as shown in Figures
43 and 44. The following is an example of how to retrieve data
utilizing both the ‘or’ and ‘and’ operation and its equivalent in a
SQL statement.

Access Control

In the context of security and access control, MongoDB supports
RBAC; however other databases may have different levels of
security and access control. MongoDB itself comes with several
default roles to simplify access control. The administrator of the
database can also create users and assign custom made roles to
them (https://www.mongodb.com/docs/manual/core/authorizati
on/). In order to create a user, the createUser() method in Figure
45 is used while the createRole() method is used to create a role.
The administrator can assign a role upon user creation or use the
grantRolesToUser() method after creating a user. The following
shows an example on how to use the createUser() method to
create a user and assign a role to them.

Data Integrity

As for data integrity, it can vary between the different document
model databases however it generally prioritizes availability over
immediate consistency. Meanwhile the flexibility of the schemas

Figure 24: Create Role in Cassandra.

Figure 25: Grant Access to Role in Cassandra.

Figure 26: Set Consistency Level in Cassandra.

Figure 27: Structure of Key-value Model.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202556

in document models leads to data redundancy as duplicate data
might be present across different documents. However, this can
lead to issues in maintaining data consistency as every instance
of the data needs to be updated (https://atlan.com/relational-vs-
document-database/).

Research Methodology

This study employs a mix of quantitative and qualitative approach
to investigate the differences between SQL (relational) and NoSQL
(graph, wide column, key-value and document) databases and
identify the factors that drive the preference for each database

models in distinct scenarios. The research focuses on theoretical
evaluation and practical insights to provide a comprehensive
understanding of database performance and application.

Data Collection Methods

The study began with collecting data and information on SQL
and NoSQL databases from various sources to address our
objectives. Initially, a literature review was conducted to study
the characteristics of each database model implemented in
their respective DBMS (Oracle, Neo4j, Cassandra, Redis and
MongoDB).

The data is collected by using academic databases such as Google
Scholar, Science Direct, and Sunway Library to ensure the
accuracy and validity of information. Mediums such as article,
journal publication, and thesis papers are primarily used as our
source of information. This research also refers to official DBMS
documentations and online blogs for additional insights on the
context of each database model in different use cases.

Data Analysis Procedures

The research will be conducted in two different parts, which is
performance evaluation and scenario analysis. The performance
evaluation will analyse the runtime performance and traits of each
database model implemented in their respective DBMS by using
quantitative results from reliable academic sources. This process
will analyse and evaluate each database model in five different
contexts: Data Creation, Data Manipulation, Data Retrieval,
Access Control, and Data Integrity, where the results are justified

Figure 28: Syntax of Data Creation in Redis (https://redis.io/docs/latest/commands/set/).

Keywords Functionality
EX seconds Set specified expire time in seconds.
PX milliseconds Set specified expire time in milliseconds.
EXAT timestamp-
seconds

Set the specified Unix time at which the
key will expire in seconds.

PXATtimestamp-
milliseconds

Set the specified Unix time at which the
key will expire in milliseconds.

NX Only set key if it does not already exist.
XX Only set the key if it already exists.
KEEPTTL Retain the time to live associated with

the key.
GET Return the old string stored at key, or nil

if key did not exist. An error is returned
and SET aborted if the value stored at
key is not a string.

Table 3: Keywords of Data Creation in Redis.

Figure 29: Example 1 of Data Creation in Redis.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 57

from our findings on the study.The second part would be the
scenario analysis where a theoretical evaluation of each database
model will be conducted in two distinct scenarios to perform
a qualitative review of their performance. This method utilizes
theory-based evaluation approach which evaluates each database
model in a conceptual context to highlight their comparative
differences and identify the preference of each database model in
a particular scenario. The two selected scenarios for theoretical
evaluation will be distinct from each other to simulate their
strength and weaknesses when implemented in a specific scenario
with different requirements.

Justification of Methodological Choices

The team decided to use a mix of quantitative and qualitative
approach for this study to understand the characteristics and
capabilities of each database models in two different levels of
context. The qualitative analysis is used to study the performance
of each database model in terms of run-time performance
and traits without having much external variable affecting the
judgement of our findings. This is purely to gain insight into
the performance of each database model implemented in their
respective DBMS and study the factors that contribute to their
performance based on their characteristics. The insights gained

are then used as a foundation of reasoning for the upcoming
qualitative evaluation with more factors to be considered.

The qualitative analysis is then used to study and simulate how
each database model will perform under distinct scenarios on a
conceptual level. This method is used to evaluate their performance
when implemented in an actual ecosystem or environment which
differs from just testing their run time performance in a controlled
environment as there are many other factors that will affect
their effectiveness. Thus, a mix of quantitative and qualitative
is method is employed to study the overall performance of each
database models in a more comprehensive and complete manner
for accuracy and relevancy of result.

Figure 30: Example 2 of Data Creation in Redis.

Figure 31: Example of Deleting Key in Redis.

Figure 32: Data Retrieval in Redis.

Figure 33: Access Control in Redis.

Figure 34: Data Integrity in Redis.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202558

RESULTS

This section presents the performance of each data model
implemented in their respective DBMS and scenario analysis to
highlight the characteristics of SQL and NoSQL databases.

Performance Evaluation

The results below are referenced from Comparison of query
performance in relational a non-relational databases by Roman
Čerešňák and Michal Kvet, (Čerešňák and Kvet, 2019). which
showcases the query performance of each data model in their
respective DBMS. The performance testing is conducted in a
controlled environment with sample records of 10k and 100k
respectively. This result is used as a benchmark for evaluation of
each data model in their respective DBMS to ensure accuracy and
relevancy in our findings.

Data Creation

Oracle and Cassandra require table creation before inserting
data while MongoDB, Redis, and Neo4j do not require a table to
store data due to their nature of NoSQL database. Instead, they
use other forms to store data that are often schema-less, except
Cassandra which uses keyspaces and column families, a structure
similar to the relational model that involves table creation.Figure
46 shown that the SQL database (Oracle) demonstrated a longer
execution time compared to the remaining NoSQL databases
(MongoDB, Redis, Neo4j, Cassandra). Although Oracle is capable
of handling larger amount of volume with only small increment
in execution time, its performance is still found lacking compared
to other NoSQL databases. The remaining NoSQL databases
demonstrated similar performance where no major deviation in
execution time when handling larger volume of data, highlighting
their scalability capabilities.

Data Manipulation
Figures 47 and 48 showcase the query performance of data
manipulation for each DBMS in the context of updating data
and data deletion. In the context of data manipulation, the
performance of SQL database is found lacking compared other
NoSQL databases, especially in handling large volume of data
deletion for Oracle. This is due to SQL databases being ACID
compliant which reduces performance when handling larger
amounts of data or performance requests where data is required
to be processed in a strict order. NoSQL databases on the other
hand can process records at any time which reduces wait time
and improves performance due to being BASE compliant
(https://aws.amazon.com/compare/the-difference-between-aci
d-and-base-database/). However, MongoDB and Neo4j is fully
ACID compliant despite being a type of NoSQL database without
sacrificing their runtime performance.

Data Retrieval

Figure 49 shown that SQL database demonstrated a decrease
in performance when retrieving larger volume of data while
the performance of NoSQL databases is similar with only slight
deviations. This is due to the nature of SQL databases which
relies on strict, predefined schema which affects how data is
retrieved due to data being stored throughout multiple tables in
the schema. Unlike SQL databases, NoSQL databases are often
deemed schemaless where it does not involve JOIN operations,
allowing them to run queries faster even when handling large
volume of data.

Access Control

Table 4 summarises the access control mechanisms implemented
in each DBMS. Both SQL and NoSQL databases supports
RBAC implementation although the extent and granularity can
vary significantly. In SQL databases like Oracle offers cell-level
granularity, which allows for very find-grained access control,
ensuring that permissions can be precisely managed down to
individual cells within tables. NoSQL databases implement RBAC
with varying levels of granularity. Neo4J operates at graph-level,
managing permissions for entire graphs and sub-graphs.
Cassandra uses column-family-level, controlling access to set of
columns. Redis uses cluster-level, managing permissions across Figure 35: Create Database in MongoDB.

Figure 36: Example of Inserting Data in MongoDB (https://www.mongodb.com/docs/manual/
crud/).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 59

entire clusters. MongoDB uses collection-level, applying access
control to entire collections of documents.

Table 5 also shows that the Oracle and MongoDB consist of
extensive built-in roles including administrative and user
permissions. It helps to streamline the management of security
without the need for creating extra custom roles. The Neo4J has
basics built-in roles. Cassandra has limited built-in roles, so it
needs additional effort to create custom roles for other access.
Redis include built-in roles with administrative functions. All
databases support creating custom roles except Redis.

Out of these databases, Oracle which is a SQL database is the
easiest to implement because of its comprehensive roles and
strong management tools. Neo4J and Cassandra is moderate to
implement but it require additional effort to create extra custom
roles. Redis is the hardest to implement as it only have limited
administrative roles and does not support creating custom roles.
Finally, MongoDB has a moderate difficulty of implementation
with the extensive built-in roles even though configuring RBAC
can be complicated due to its schema-less design.

Data Integrity

Table shows whether each database is BASE or ACID compliant,
along with the implementation difficulty.

Oracle supports easy implementation of various constraints
like primary keys, foreign keys, unique constraints and check
constraints in order to enforce data integrity. Triggers can also
be used enforce more complex business rules, data constraints
and relationships. Meanwhile, MongoDB utilizes JSON schema
validation to enforce data integrity and embeds related data in
a single document to ensure consistency, however, it does not
enforce these constraints as strictly as relational databases. Neo4j
supports unique constraints on node labels and relationships as
well as write-ahead transaction logs to enforce data integrity.
These constraints are implemented through Cypher queries but
they are more limited in types compared to relational databases.
Cassandra supports a primary key but lack other constraints
such as foreign keys and unique constraints. Instead, it relies
on application logic to enforce data integrity. And finally, Redis
supports atomic operations but does not enforce any schema
constraints and uses application logic similar to Cassandra. This
makes enforcing data integrity with Redis and Cassandra difficult
compared to other databases.Scenario AnalysisE-Commerce
Platform

This scenario features an e-commerce platform such as Shopee
and Lazada which handles large volume of transaction requests
that needs to be processed concurrently. This is usually achieved
by implementing Online Transactional Processing (OLTP)
database which excels in real-time execution of large numbers of
transactions performed by many users (https://www.ibm.com/
topics/oltp). The e-commerce platform also requires a structured
database model that is capable of storing user and product data
from the sellers, ensuring data are interconnected and consistent
when a transaction occurs.

Most of the OLTP database exists are relational databases which
can accommodate large volume of concurrent users and frequent
query processing, which is crucial in the e-commerce platform.
The nature of this scenario requires data to be constantly updated
in fast response times due to the frequent transactions performed
by many users. Thus, the ideal database model should support
rapid query processing and ensure that multiple users have access
to same data all the time without compromising data integrity. For
future proof, the proposed database model should also be scalable
due to the dynamic evolving nature of e-commerce platforms that
needs to accommodate increasing numbers of users.

Relational Model (Oracle)
Strengths

Efficient Query Performance-Data stored are indexed in the table
which is used for querying, searching, and retrieval to perform
transactions efficiently. (https://www.ibm.com/topics/oltp).

Figure 37: Example of Inserting Multiple Data in MongoDB (https://www.
mongodb.com/docs/manual/tutorial/insert-documents/).

Figure 38: Example of Updating One Data in MongoDB (https://www.
mongodb.com/docs/manual/tutorial/update-documents

/).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202560

ACID Compliant-Transactions carried out are fully ACID
compliant which ensures data integrity and consistency
throughout the schema despite how data is modified frequently
due to the referential constraints.

Complex Query Processing-Supports complex SQL operations
which provides flexibility in accessing or processing data from
multiple entities such as retrieving product data and user details
for a transaction.

Robust RBAC Mechanism-Consists of robust built-in RBAC
and data encryption feature that is easy to implement to ensure
privacy of user data and prevention of unauthorized access.

Weaknesses

Rigid Schema-Implementation of a rigid schema makes
relational model inflexible in accommodating new types of data
or structural changes in the e-commerce platform.

Scalability Issue-The rigid schema leads to scalability issues where
it is less efficient when handling larger volume of data due to the
constraint and checks of the schema which affects performance
in the platform.

Costly-Requires high overhead to modify the rigid structure
of the schema just to scale according to business needs in this
highly dynamic e-commerce environment as it involves major
restructuring and development to ensure ACID compliant.

Graph Model (Neo4J)
Strengths

Complex Relationship Management-Excel in representing
and querying complex relationships between entities such
as, customers, products, and orders for rapid processing by
interconnecting the data when a user perform a transaction.

Real-Time Analytics Capabilities-Support real-time analytics and
insights based on user behaviour due to complex relationship
management which stores the dynamic behaviour of users in the
e-commerce platform

Scalability-Highly scalable to accommodate more data due to
the schema optional nature of graph model which allows the
e-commerce platform to accommodate more dynamic data of
users and transactional records.

Weaknesses

Scalability with High Write Throughput-Struggles with high
write throughput in an OLTP context, especially when compared
to relational databases which is optimized for e-commerce
operations.

Inadequate Query Performance-Graph model may excel in query
processing, but it is found lacking when comparing with relational

databases in performing highly transactional operations such as
updating order status and inventory management.

Complexity in Maintaining Graph Structure-Frequent
transactions performed by multiple users concurrently will
constantly modify the data and affect the overall graph structure,
leading to performance bottleneck.

Wide Column Model (Cassandra)
Strengths

Horizontal Scalability and High Availability-Supports large
volumes of data and handles high transaction rates, ensuring
consistent performance during peak times like sales or promotions
(https://databasetown.com/wide-column-database-use-cases/).

Seamless Scaling Without Downtime-Scale out seamlessly
without downtime, maintaining consistent performance and
high availability, which is critical for maintaining customer
trust and prevent revenue loss (https://databasetown.com/
wide-column-database-use-cases/).

High Write Throughput-Efficiently handles frequent updates such
as inventory changes, user activity logs, and order processing,
essential for real-time data processing (https://databasetown.
com/wide-column-database-use-cases/).

Flexible Schema Model-Easy to add new fields without
disrupting existing data, good at adapting to changing
business needs, such as introducing new product attributes or
supporting diverse data formats (https://databasetown.com/
wide-column-database-use-cases/).

Fault-Tolerant-Ensures data replication across multiple
nodes to eliminate single points of failure and provide
high resilience against outages (https://databasetown.com/
wide-column-database-use-cases/).

Weaknesses

Eventual Consistency-May not provide the immediate
consistency required in e-commerce platform such as financial
transactions or inventory management (https://databasetown.
com/wide-column-database-use-cases/).

Complex Data Modelling-Requires good understanding
of the CQL to design an efficient schema. Can cause data
redundancy and increased storage requirements because
of the lacks support for joins (https://databasetown.com/
wide-column-database-use-cases/).

Limited Support for ACID Transactions-Not ideal for
applications that require strong transactional consistency
across multiple rows or tables (https://databasetown.com/
wide-column-database-use-cases/).

Limited Query Flexibility-Lacks support for complex querying
such as joins or ad hoc queries which can be restrictive for

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 61

e-commerce platform that requires robust data analysis
and reporting capabilities (https://databasetown.com/
wide-column-database-use-cases/).

Increased Latency with Large Datasets-May experience increased
latency and potentially causing performance bottlenecks
as the data set grows. This is a concern for e-commerce
platforms that deal with extensive product catalogues and
high user interaction volumes (https://databasetown.com/
wide-column-database-use-cases/).

Key-Value Model (Redis)
Strengths

Fast Data Handling-In-memory storage allows for fast data
handling with minimal latency to support the processing of
large volume of data in real-time such as processing orders
and managing products (https://redis.io/nosql/key-value-
databases/).Flexible Schema-Supports various types of entities
which lets the platform perform changes such as adding new
product information or details without much effort (https://redis.
io/nosql/key-value-databases/).

Efficient Caching-Caching capability reduces memory usage by
storing frequently accessed data such as information of popular
products and payment details of user (https://redis.io/nosql/
key-value-databases/).

Partially ACID-Compliant-Supports atomic operations which
help ensure consistency and improve accuracy in processes such
as order processing and inventory management (https://redis.io/
nosql/key-value-databases/).

Scalability-Can be scaled horizontally to handle increased
traffic during peak periods such as sales and holidays,
which increases overall performance (https://redis.io/nosql/
key-value-databases/).

Weaknesses

High Cost-In-memory storage utilizes RAM instead of traditional
hard drives which can be costly to prepare the necessary
hardware and infrastructure to support a large data volume
present in an e-commerce platform (https://alronz.github.io/
Factors-Influencing-NoSQL-Adoption/site/Redis/Results/
Strengths%20and%20Weaknesses/).

Slow Backups-Regular backups performed by the database can
slow the system down as memory dumps are used to create
snapshots which may cause reoccurring periods of lag while
performing backups (https://alronz.github.io/Factors-Influencin
g-NoSQL-Adoption/site/Redis/Results/Strengths%20and%20
Weaknesses/).

Lack of Complex Querying Capabilities-Data can only be
accessed via key and there are no relationships in a key-value pair

model which can complicate development and features such as
product filtering (https://redis.io/nosql/key-value-databases/).

Document Model (MongoDB)
Strengths

Flexible Schema-Has a schema that is easily adaptable to changes.
Can be used to store a wide range of information such as product
details and customer information.

Complex Data Structures-Supports nested arrays and embedded
documents which can help further embed information reducing
the need for multiple collections and joins such as embedding the
payment details in the user collection.

Real-Time Analytics-Provides real-time data analytics allowing
for analysis of data such as customer behaviour, inventory levels,
and sales data.

Simplified Data Handling-Related data can be stored in a single
document which reduces the need for joining. This makes
retrieval and manipulation of data easier such as fetching
and modifying product and order details (https://atlan.com/
relational-vs-document-database/).

Strong RBAC-Employs RBAC and Client-Side Field Level
Encryption (CSFLE) which help ensure that sensitive data such as
customer information and payment details are only accessible to
those with the proper permission (https://www.mongodb.com/
docs/manual/core/csfle/).

Scalability-Can be scaled horizontally to handle increased traffic
during peak periods such as sales and holidays, which increases
overall performance.

ACID-Compliant-Supports atomic operations across
multiple documents and provides replica sets for data
redundancy and consistency in processes such as
payment processing and order handling (https://www.
mongodb.com/resources/basics/databases/acid-transactions;
https://www.mongodb.com/docs/manual/replication/).

Weaknesses

Inconsistency and Complexity-The flexibility of the schema can
make managing old and new documents challenging which
can result in inconsistencies when handling different data
structures such as when new customer data is gathered, while
old profiles lack these data fields (https://atlan.com/relational-vs
-document-database/).

Storage Requirement and Memory Usage-Replica sets can
lead to higher storage requirements and memory usage
which can cost a lot when handling a large data volume in an
e-commerce platform (https://www.knowledgenile.com/blogs/
pros-and-cons-of-mongodb).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202562

Lack Join Capabilities-The nature of a document model lacks
join capabilities which can make data retrieval from multiple
documents challenging during processes such as user interactions
and generating reports or order information (https://www.
knowledgenile.com/blogs/pros-and-cons-of-mongodb).

Social Media Analysis

This second scenario features social media analytics applications
or platforms such as Instagram Insights and TikTok Analytics.

These applications serve as a tool to gather information
regarding social media performance and audience engagement
in digital marketing which are widely utilized by companies
nowadays (https://blog.hootsuite.com/social-media-analyti
cs/). Unlike OLTP databases, they usually consist of utilizing Online
Analytical Processing (OLAP) databases, where they perform
rapid and complex queries execution for multidimensional
analysis on large volumes of data in a data repository (https://
www.ibm.com/topics/oltp). Instead of performing business
operations such as e-commerce transactions, it is mainly used

Figure 39: Example of Updating Multiple Data in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/
update-documents/).

Figure 40: Example of Replacing Data in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/
update-documents/).

Figure 41: Example of Deleting Data in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/remove-documents/).

Figure 42: Example of Deleting Multiple Data in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/remove-documents/).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 63

for Business Intelligence (BI), decision support, and business
forecasting which a social media analysis perform to generate
insights on their digital marketing (https://www.ibm.com/topics/
oltp).

The system needs to have the capability to handle extremely high
volumes of data generated by users through posts, comments,
likes, shares, and other interactions to produce valuable insight.
Unlike the first scenario, this system is characterized by massive
and continuously growing datasets, where schema complexity
is varied and constantly evolving due to the dynamic and
interconnected nature of social media data.

Relational Model (Oracle)

Strengths

Structured Data Management-Excels in organizing data into
well-defined tables, ensuring data consistency and integrity
through constraints like primary keys and foreign keys.

Robust Querying Capabilities-Allows for detailed analysis, such
as tracking user engagement and identifying trends, which are
essential for making informed decisions in social media strategies.

ACID Properties-Maintain data accuracy and ensure reliable
transaction management in dynamic changes such as posts and
comments.

Comprehensive Access Control-Fine-grained permissions
to protect user information and ensure compliance with
data protection regulations (https://databasetown.com/
relational-database-benefits-and-limitations/).

Weaknesses

Scalability Challenges-Might has struggles to efficiently
manage vast and unstructured datasets commonly found
in social media platforms (https://databasetown.com/
relational-database-benefits-and-limitations/).

Rigid Schema Requirement-Inflexible schema causes difficulty
in adapting to the evolving nature of social media data, which
further complicates the addition of new data types or structural
changes.

Performance Overhead-Enforcement of data integrity
and ACID properties can lead to performance overhead,
especially under high transaction loads, impacting the
speed of real-time analytics (https://databasetown.com/
relational-database-benefits-and-limitations/).

Figure 43: Data Retrieval Using OR Operation in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/query-documents/).

Figure 44: Data Retrieval Using AND Operation in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/query-documents/).

Figure 45: Access Control in MongoDB. (https://www.mongodb.com/docs/manual/tutorial/create-users/).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202564

Complex Data Representation-Intricate relationships
and hierarchical data in a relational model leads to
inefficient queries and cumbersome database design
once data volumes increase (https://databasetown.com/
relational-database-benefits-and-limitations/).

Cost Considerations-Oracle databases can be expensive to
license and maintain, particularly for configurations that demand
high availability and performance (https://databasetown.com/
relational-database-benefits-and-limitations/).

Limited Support for Unstructured Data-The relational
model's limited support for unstructured data, such as text,
images, and videos, poses a significant challenge. Integrating

unstructured data into a relational framework can be complex
and resource-intensive, potentially limiting the effectiveness of
analytics.

Graph Model (Neo4j)
Strengths

Rapid Query Capabilities-Utilizes pattern matching to quickly
traverse through complex and dynamic relationships between
nodes for researching user behaviour from social media posts.

High Flexibility-Nature of schema optional allows new identified
relationships to be added easily into the graph structure which
accommodates the dynamic and evolving nature of user behaviour
within social media platforms to be analysed.

Figure 46: Query Performance of Data Insertion for Each DBMS (Čerešňák and Kvet, 2019; https://aws.
amazon.com/compare/the-difference-between-acid-and-base-database/).

Figure 47: Query Performance of Data Update for Each DBMS (Čerešňák and Kvet, 2019).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 65

Scalability-Excels in scaling horizontally which utilizes
partitioning on different servers to parallelly process graph
queries for processing huge amounts of social media data
(https://aws.amazon.com/compare/the-difference-between-grap
h-and-relational-database/).

Fully ACID Compliant-Transactions performed are fully ACID
compliant despite being a NoSQL database and schema optional
which ensures data integrity and consistency within the complex
social media graph network.

RBAC Mechanism-Supports RBAC mechanisms that comes with
built-in roles that can be delegated to researchers with different
level of access to social media data.

Weaknesses

Only Effective for Relationship-Heavy Scenarios-Graph model
only excels in handling complex relationship scenarios like this
social media analytics platform, where it may find lacking in
simple data storage and retrieval tasks.

Significant Computational Resources-Requires high memory
consumption and significant computational resources to handle
complex queries and large datasets for optimal performance in a
social media analytics platform.

Complex Maintenance and Configuration-Requires extensive
maintenance and configuration of data clusters within the social
media graph network to ensure query efficiency and execution in
a distributed environment.

Figure 48: Query Performance of Data Deletion for Each DBMS (Čerešňák and Kvet, 2019).

Figure 49: Query Performance of Data Retrieval for Each DBMS (Čerešňák and Kvet, 2019).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202566

Wide Column Model (Cassandra)
Strengths

High Write Throughput-Optimized for high write throughput
with low latency. Ideal for social media analytics since large
amounts of data are ingested rapidly, such as logging social media
interactions in real-time.

Scalability-Scales horizontally across multiple nodes with ease,
allowing for distributed data storage and processing rapid
growing data volumes.

Flexible Schema-Allows to add new columns without altering the
existing table structure, which is good when dealing with varying
types of social media data such as posts, comments and likes.

High Availability and Fault Tolerance-Able to provide high
availability and fault tolerance. This is important as the analytics
platform could remain operational even during node failures.

Weaknesses

CQL Limitations-Less features when compared to SQL, lacks
support for complex joins, subqueries and aggregate functions.
This can be limiting when performing analytics or querying
across multiple datasets in social media contexts.

Data Model Complexity-Requires careful planning and deep
understanding of the query patterns upfront. Mistakes can lead to
inefficient data retrieval, especially problematic in dynamic and
evolving social media analytics environment.

Read Performance-Can suffer if the data is not partitioned
appropriately, leading to potential bottlenecks in social media
analytics where quick access to data is crucial.

Eventual Consistency-Wide column model follows an eventual
consistency model, which might not be ideal for social media
analytics where immediate consistency is required.

Operational Overhead-Requires significant operational expertise
which can become complex and resource-intensive, especially
when handling large volumes of social media data across multiple
regions.

Key-Value Model (Redis)
Strengths

Fast Data Handling-In-memory storage allows for fast data
handling with minimal latency to support the processing of large
volume of data in real-time such as user interaction, activity feed
and trending topics (https://redis.io/nosql/key-value-databases/).

Flexible Schema-Supports various types of entities which lets
the platform perform changes such as adding new metrics
or interactions without much effort (https://redis.io/nosql/
key-value-databases/).

Efficient Caching-Caching capability reduces memory usage by
storing frequently accessed data such as user profile and popular
content (https://redis.io/nosql/key-value-databases/).

Partially ACID-Compliant-Supports atomic operations which
help ensure consistency and improve accuracy in processes
such as updating follower counts and interactions between users
(https://redis.io/nosql/key-value-databases/).

Scalability-Can be scaled horizontally to handle increased traffic
during high traffic periods such as viral and trending events,
which increases overall performance (https://redis.io/nosql/
key-value-databases/).

Weaknesses

High Cost-In-memory storage utilizes RAM instead of traditional
hard drives which can be costly to prepare the necessary
hardware and infrastructure to support a large data volume
present in a social media analytics platform that handles a large
volume of posts and user interactions (https://alronz.github.
io/Factors-Influencing-NoSQL-Adoption/site/Redis/Results/
Strengths%20and%20Weaknesses/).

Slow Backups-Regular backups performed by the database can
slow the system down as memory dumps are used to create
snapshots which may cause reoccurring periods of lag while
performing backups (https://alronz.github.io/Factors-Influencin
g-NoSQL-Adoption/site/Redis/Results/Strengths%20and%20
Weaknesses/).

Lack of Complex Querying Capabilities-Data can only be
accessed via key and there are no relationships in a key-value
model which can complicate development and features such as
user analysis and filtering of interactions (https://redis.io/nosql/
key-value-databases/).

Document Model (MongoDB)
Strengths

Flexible Schema-Has a schema that is easily adaptable to changes.
Can be used to store a wide range of information such as user
profiles, posts and comments.

Complex Data Structures-Supports nested arrays and embedded
documents which can help further embed information reducing
the need for multiple collections and joins such as embedding the
user interactions and metadata in a single document.

Real-Time Analytics-Provides real-time data analytics allowing
for analysis of data such as user behaviour, statistics, and content
engagement data.

Simplified Data Handling-Related data can be stored in a single
document which reduces the need for joining. This makes
retrieval and manipulation of data easier such as updating

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 67

comments and posts when user’s profile is changed (https://atlan.
com/relational-vs-document-database/).

Strong RBAC-Employs RBAC and CSFLE which help ensure that
sensitive data such as private messages and user analytics are only
accessible to those with the proper permission (https://www.
mongodb.com/docs/manual/core/csfle/).

Scalability-Can be scaled horizontally to handle increasing data
volume as the amount of posts increases, which increases overall
performance.

ACID-Compliant-Supports atomic operations across multiple
documents and provides replica sets for data redundancy and
consistency in processes such as user authentication and interactions
(https://www.mongodb.com/resources/basics/databases/
acid-transactions; https://www.mongodb.com/docs/manual/
replication/).

Weaknesses
Inconsistency and Complexity-The flexibility of the schema
can make managing old and new documents challenging
which can result in inconsistencies when handling different
data structures such as when new user profile is created, while
old profiles lack these data fields (https://atlan.com/relational-v
s-document-database/).

Storage Requirement and Memory Usage-Replica sets can lead
to higher storage requirements and memory usage which can
cost a lot when handling a large data volume in a social media
analytics platform (https://www.knowledgenile.com/blogs/
pros-and-cons-of-mongodb).

Lack Join Capabilities-The nature of a document model lacks
join capabilities which can make data retrieval from multiple

documents challenging during processes such as user interactions
and generation of content metrics (https://www.knowledgenile.
com/blogs/pros-and-cons-of-mongodb).

Summary of Results

Based on both performance evaluation and scenario analysis,
the database models of NoSQL (graph, wide column, key-value,
document) databases demonstrated overall better performance
than SQL (relational) databases. The major preference factor
of NoSQL databases is due to their flexibility in storing data
in a schemaless structure which improves read and write
operations and scalability. Traditional SQL databases on the
other hand adheres to a strict and rigid structure schema which
compromises performance to ensure data integrity may be found
lacking to accommodate the dynamicity of business needs in this
evolving digital era. However, the overall performance of the
characteristics of each database model is not sufficient to be the
only determining factor.

In Figure 50, Oracle DBMS that utilizes relational model is
still the leading choice and popularity for users despite the
emergence of NoSQL databases that demonstrated better overall
performance in this study. This is due to the long history of SQL
databases, where it is supported by a large community of users
that are familiar with the user-friendly SQL and understands
the reliability of using traditional SQL databases (https://www.
testgorilla.com/blog/sql-vs-nosql). The ease of usability and
rigidity of schema may overwhelm the trade-offs of using NoSQL
databases due to their trustworthy and robust reputation which
is still relevant for many businesses. However, this also does not
mean that SQL databases are better than NoSQL databases in
implementation.

Database RBAC Granularity Built-in Roles Custom Roles Difficulty of
Implementation

Oracle Cell-level Extensive image50 Easy
Neo4J Graph-level Basic image50 Moderate
Cassandra Column-family-level Limited image50 Moderate
Redis Cluster-level Limited to

administrative roles
image52 Hard

MongoDB Collection-level Extensive image50 Moderate

Table 4: Summarisation of Implementation of RBAC.

Database BASE ACID Implementation Difficulty
Oracle image52 image50 Easy
MongoDB image52 image50 Moderate
Redis image50 Partially Difficult
Neo4j image52 image50 Moderate
Cassandra image50 image52 Difficult

Table 5: Summarisation of Data Integrity.

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202568

In Figure 51, database models of NoSQL databases have shown
a significant increase in popularity over relational DBMS. This
phenomenon is due to the dynamic nature of business which is
constantly evolving, where new DBMS models are developed to
accommodate certain needs and different scale of data. However,
SQL database that utilizes relational model is still relevant in this
era as not all businesses are required to handle such large scale of
data operations. Thus, there is no saying that NoSQL databases are
better than SQL databases as the performance of each database
model heavily relies on the context of application and usage.

DISCUSSION AND CONCLUSION

All databases have its advantage, making it more suitable
for specific applications. The table below summarizes and
compares the data models in 5 aspects: security, integrity, query
performance, availability, and scalability.

Security

Oracle's relational model provides strong protection with
advanced access control mechanisms, including RBAC and
relational view/virtual tables. Redis offers RBAC for defining
roles and managing access, but its security features are more
basic compared to Oracle. Neo4j secures graph data using RBAC,
ensuring controlled access to the relationships and nodes within
the graph. MongoDB provides detailed access control and data
protection with the features of RBAC and CSFLE. Cassandra

supports multi-tenant environments and extensive data
protection via complex security configurations.

Integrity

Oracle has ACID compliance and referential integrity to ensure
consistent data relationships. Redis only provides basic data
integrity and lacks support for complex transactions. Neo4j is
fully ACID compliant, which is makes it suitable for accurate
analytics and decision-making in graph-based data. MongoDB
also supports ACID transactions, which ensures documents are
consistent. Cassandra has consistency levels that can be tuned,
based on the requirements needed.

Query performance

Oracle's relational model has great query performance with
the use of SQL but the performance will decrease when there
are complex joins and large datasets. Redis is quick in simple
key-value operations due to its in-memory storage but it lacks
advanced querying features. Neo4j is strong in querying complex
relationships through its advanced graph traversal capabilities.
MongoDB offers efficient querying through embedded documents
and indexing, and also supports real-time analytics for dynamic
and evolving data. Cassandra performs well with large-scale data
and complex queries.

Availability

High availability is achieved through clustering and sharding
by Oracle. However, it can be complex and costly to implement.
Redis does it through clustering and replication, but availability is
generally limited by its in-memory nature. Neo4j also maintains
high availability with clustering and replication but it is difficult
to maintain consistency across extensive graphs. MongoDB uses
replica sets to provide redundancy and failover capabilities, and
also supports horizontal scaling. Cassandra is highly available
with built-in replication across multiple nodes and data centers,
offering redundancy and fault tolerance. However, it may be
complex to set up and manage.

Scalability

Oracle’s rigid schema and complex dataset management may
affect its scalability. Redis is highly scalable horizontally by
adding more keys but is constrained by memory limits and
associated costs. Neo4j scales well with interconnected data but
high computational resources would be needed. MongoDB offers
flexible horizontal scalability through sharding and hence, can
handle large volumes of data and adapt to evolving structures.
Cassandra is designed for horizontal scaling and effectively
manages large data volumes and high throughput.

By providing a comparative examination of several data models
across important database concerns, this study additionally builds
on earlier research. Previous studies were mostly focused on

Figure 50: Ranking of Database Engines From 2014 to 2024 August (https://
db-engines.com/en/ranking_trend).

Figure 51: Ranking of Database Models Ranging 2013 to 2024 August
(https://db-engines.com/en/ranking_categories).

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 2025 69

individual models or specific applications. Hence, this research
focused on offering a wider perspective on how various models
function in diverse settings. It also emphasizes the usefulness
of selecting a database model in accordance with particular use
cases, in which we have chosen social media analytics platforms
and e-commerce platforms as example.

Through this report, the team has learnt that each database model
excels in different areas but also has its limitations. When deciding
on which database model is most suitable, we should consider
the specific requirements and priorities of the application. As no
single model is universally superior, each database models pros
and cons should be carefully considered to implement an efficient
and effective database that could cater to the application’s need.

LIMITATIONS

There are several limitations in this study. The quantitative data
in this study were collected only under specific conditions and
environments because we adopted only two from academic
papers instead of own testing. This is due to the lack of existing
computational resources, complexity of factors that would affect
database performance and the team’s limited experience in
conducting controlled environment tests. There are also various
complexities in the actual operating environment that may not be
sufficiently reflected. For example, this study mainly focused on
the performance evaluation of the basic database. However, in the
real environment, more factors such as security, recovery time,
and maintenance cost determine the performance and efficiency
of the database.

Furthermore, since the amount of data collected in the
experimental environment of the academic paper referred
was small (10k and 100k queries), practical variables were not
sufficiently reflected. For example, the research results were
concluded without considering failures, traffic peaks, and
unexpected data patterns. More than millions of records can
be processed in the real environment, so the database was not
evaluated based on sufficient samples.

Due to these limitations, the gap with the actual operating
environment may be significant.

FUTURE STUDIES

The research only compares the SQL and NoSQL database
without considering the possibility of a more efficient database
that absorbs the advantages of each database. In other words,
there is a desire to study hybrid database systems.

Modern applications have to process both structured and
unstructured data. For example, an e-commerce platform
ideally will need to store transaction data in a SQL database and
unstructured data, such as users' review boards, in a NoSQL
database.

In addition, the scalability of database systems has become a hot
topic as the amount of data grows exponentially. SQL databases
and NoSQL databases have strengths in vertical and horizontal
expansion, respectively. There will also be an increasing demand
for databases that provide balanced scalability that absorbs
both strengths. Furthermore, by combining the features of SQL
databases where integrity and data consistency are important
and NoSQL databases where fast data access and flexibility are
important, answers to meet both requirements can be studied
upon.

Group member contributions
Student
Name (ID)

Percentage of
contribution in each
section (1-6)

Percentage
of the overall
participation

Dionne Teh
Wooi Ying
(21074356)

2 (20%), 5 (50%),
proofread and edit
report

100%

Cheah Shaoren
(21051982)

2 (20%), 3 (100%), 4
(33%)

100%

Chin Wey Ken
(21048012)

2 (20%), 4 (33%), 6
(100%)

100%

Choo Yan Jie
(21061734)

2 (20%), 4 (33%),
compile report

100%

Hong Chang
Eui (23037476)

1 (100%), 2 (20%), 5
(50%)

100%

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ABBREVIATIONS

SQL: Structured Query Language; NoSQL: Not Only SQL; DBMS:
Database Management System; RDBMS: Relational Database
Management System; JSON: JavaScript Object Notation; API:
Application Programming Interface.

REFERENCES
Al-Saeedi, B. Strengths and weaknesses-factors influencing NoSQL adoption. GIThub.

Retrieved August 05, 2024, https://alronz.github.io/Factors-Influencing-
NoSQL-Adoption/site/Redis/Results/Strengths%20and%20Weaknesses/

Amazon web services. “ACID vs BASE databases-difference between databases-AWS,”
Amazon Web Services, Inc. Retrieved August 08, 2024, https://aws.a
mazon.com/compare/the-difference-between-acid-and-base-database/

Amazon web services. “Graph vs relational databases-difference between
databases-AWS,” Amazon Web Services, Inc. Retrieved August 08, 2024, https://aw
s.amazon.com/compare/the-difference-between-graph-and-relational-database/

Atlan. (December 19, 2023). Relational vs document database: 9 key differences!
Atlan. Retrieved August 03, 2024, https://atlan.com/relational-vs-
document-database/

AWS. What is a document database? Amazon web services, Inc. Retrieved August 03, 2024,
https://aws.amazon.com/nosql/document/

Cassandra, A. (2024). ‘Apache Cassandra | Apache Cassandra Documentation,’ Cassandra.
Retrieved August 03, 2024, https://cassandra.apache.org/_/index.html

Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a
non-relation databases. Transportation Research Procedia, 40, 170–177. https://doi
.org/10.1016/j.trpro.2019.07.027

Ying, et al.: Comparative Analysis of SQL and NoSQL Databases: Data Models, Use Cases, and Performance Insights

Information Research Communications, Vol 2, Issue 1, Jan-Apr, 202570

DatabaseTown. “Relational database benefits and limitations (advantages &
disadvantages)-DatabaseTown,” Database Town. Retrieved August 08, 2024, https:/
/databasetown.com/relational-database-benefits-and-limitations/

DataStax. (April 17, 2024). “What is Apache Cassandra?” | Open Source Database,”
DataStax. Retrieved August 03, 2024, https://www.datastax.com/guides/what-is-ca
ssandra

DataStax. “About the Cassandra query language (CQL)” | CQL for DataStax
Hyper-Converged Database | DataStax Docs,” DataStax. Retrieved August 03, 2024, h
ttps://docs.datastax.com/en/cql/hcd-1.0/overview/cql-about.html

DataStax. “Apache Cassandra Structure | CQL for DataStax Hyper-Converged Database
| DataStax Docs,” DataStax. Retrieved August 03, 2024, https://docs.datas
tax.com/en/cql/hcd-1.0/overview/cassandra-structure.html

DataStax. “How are consistent read and write operations handled?” | Apache Cassandra
3.x,” DataStax. Retrieved August 03, 2024, https://docs.datastax.com/en/
cassandra-oss/3.x/cassandra/dml/dmlAboutDataConsistency.html

DB-engines, “DB-Engines Ranking per database model category,” DB-Engines. Retrieved
August 08, 2024, https://db-engines.com/en/ranking_categories.

DatabaseTown, “Wide Column Database (Use Cases, Example, Advantages &
Disadvantages)-DatabaseTown,” DatabaseTown. Retrieved August 08, 2024, https:/
/databasetown.com/wide-column-database-use-cases/.

DB-Engines. “historical trend of the popularity ranking of database management
systems,” DB-engines. Retrieved August 08, 2024, https://db-engines.com/en/ranki
ng_trend

EvalCommunity. Theory-based evaluation approach-EvalCommunity. Eval.
Community. Retrieved August 05, 2024, https://www.evalcommunity.com/
career-center/theory-based-evaluation-approach/

IBM. What are NoSQL databases? | IBM. IBM. Retrieved August 03, 2024, https://www
.ibm.com/topics/nosql-databases

IBM. What is OLTP? | IBM. IBM. Retrieved August 08, 2024, https://www.ibm.com/to
pics/oltp

IBM. What is redis explained? | IBM. IBM. Retrieved August 03, 2024, https://www.ib
m.com/topics/redis

Knight, M. (April 28, 2021). What is a property graph? DATAVERSITY. https://www.dat
aversity.net/what-is-a-property-graph/

KT. (November 11, 2022). Retrieved August 08, 2024, https://www.testgorilla.com/blog/
sql-vs-nosql. SQL vs. NoSQL: Full comparison of features, differences, and more.
TestGorilla.

Lutkevich, B., Alexander, S. G., & Biscobing, J. (June 01, 2024). What is a relational
database? Tech. Target. Retrieved August 05, 2024, https://www.techtarget.com/sea
rchdatamanagement/definition/relational-database

Mongo, D. B. (2024). ‘Client-Side Field Level Encryption,’ MongoDB. Retrieved August 05,
2024, https://www.mongodb.com/docs/manual/core/csfle/

Mongo, D. B. ACID properties in DBMS explained. MongoDB. Retrieved August 05, 2024,
https://www.mongodb.com/resources/basics/databases/acid-transactions

Mongo, D. B. Create a user-MongoDB Manual. MongoDB. Retrieved August 03, 2024,
https://www.mongodb.com/docs/manual/tutorial/create-users/

Mongo, D. B. Databases and collections-MongoDB Manual. MongoDB. Retrieved August
03, 2024, https://www.mongodb.com/docs/manual/core/databases-and-co
llections/

Mongo, D. B. Delete documents-MongoDB Manual. MongoDB. Retrieved August 03, 2024,
https://www.mongodb.com/docs/manual/tutorial/remove-documents/

Mongo, D. B. Insert documents-MongoDB Manual. MongoDB. Retrieved August 03, 2024,
https://www.mongodb.com/docs/manual/tutorial/insert-documents/

Mongo, D. B. JSON and BSON. MongoDB. Retrieved August 03, 2024, https://www.m
ongodb.com/resources/basics/json-and-bson

Mongo, D. B. MongoDB CRUD operations-MongoDB Manual. MongoDB. Retrieved August
03, 2024, https://www.mongodb.com/docs/manual/crud/

Mongo, D. B. MongoDB Shell (mongosh)-MongoDB Shell. MongoDB. Retrieved August 03,
2024, https://www.mongodb.com/docs/mongodb-shell/

Mongo, D. B. Query documents. MongoDB. Retrieved August 03, 2024, https://www.
mongodb.com/docs/manual/tutorial/query-documents/

Mongo, D. B. Replication. MongoDB. Retrieved August 05, 2024, https://www.mongo
db.com/docs/manual/replication/

Mongo, D. B. Role-based access control-MongoDB Manual. MongoDB. Retrieved August
03, 2024, https://www.mongodb.com/docs/manual/core/authorization/

Mongo, D. B. Update documents-MongoDB Manual. MongoDB. Retrieved August 03,
2024, https://www.mongodb.com/docs/manual/tutorial/update-documents/

Mongo, D. B., “Transactions-MongoDB Manual,” MongoDB. Retrieved August 05, 2024,
https://www.mongodb.com/docs/manual/core/transactions/

Neo4j. (2024a). ‘Graph database concepts-Getting Started,’ Neo4j. Retrieved
August 03, 2024, https://neo4j.com/docs/getting-started/appendix/
graphdb-concepts/

Neo4j. (2024b). ‘Overview-Cypher Manual,’ Neo4j. Retrieved August 03, 2024, http
s://neo4j.com/docs/cypher-manual/current/introduction/cypher-overview/

Neo4j. (2024c). ‘What is a graph database? -Getting Started,’ Neo4j. Retrieved August
03, 2024, https://neo4j.com/docs/getting-started/get-started-with-neo4j/
graph-database/

Neo4j. (2024d). ‘Authentication and authorization-Operations Manual,’ Neo4j.
Retrieved August 03, 2024, https://neo4j.com/docs/operations-manual/current/
authentication-authorization/

Neo4j. (2024e). ‘Built-in roles and privileges-Operations Manual,’ Neo4j. Retrieved
August 03, 2024, https://neo4j.com/docs/operations-manual/current/
authentication-authorization/built-in-roles/

Neo4j. (2024f). ‘Database internals and transactional behavior-Operations Manual,’
Neo4j. Retrieved August 03, 2024, https://neo4j.com/docs/operations-manual/curre
nt/database-internals/

Neo4j. (2024g). ‘Transaction logging-Operations Manual,’ Neo4j. Retrieved August 03,
2024, https://neo4j.com/docs/operations-manual/current/database-internals/
transaction-logs/

Newberry, C. (June 27, 2024). 21 of the best social Media Analytics tools for 2024.
Hootsuite. Retrieved August 05, 2024, https://blog.hootsuite.com/social-media-ana
lytics/

Nile. Retrieved August 05, 2024, https://www.knowledgenile.com/blogs/
pros-and-cons-of-mongodb. KnowledgeNile, “Ultimate guide MongoDB: Definition,
advantages & disadvantages.” Knowledge.

Oracle. Data integrity. Oracle. Retrieved August 03, 2024, https://docs.oracle.com
/cd/E18283_01/server.112/e16508/datainte.htm.

Oracle. Database security guide. Oracle. https://docs.oracle.com/database/121/D
BSEG/authorization.htm#DBSEG124.

Oracle. Maintaining data integrity through constraints. Oracle. Retrieved August 05, 2024,
https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg05itg.htm.

Oracle. Transaction management. Oracle. Retrieved August 03, 2024, https://docs.or
acle.com/cd/B14117_01/server.101/b10743/transact.htm.

Oracle. What is a relational database? Oracle. Retrieved August 03, 2024, https://ww
w.oracle.com/database/what-is-a-relational-database/.

Redis. (2024). ‘GET | Docs,’ redis. Retrieved August 03, 2024, https://redis.io/docs/
latest/commands/get/

Redis. Access control | Docs. Redis. Retrieved August 03, 2024, https://redis.io/do
cs/latest/operate/rs/security/access-control/

53. Redis. ACL | Docs. Redis. Retrieved August 05, 2024, https://redis.io/docs/latest/o
perate/oss_and_stack/management/security/acl/

Redis. Del | Docs. Redis. Retrieved August 03, 2024, https://redis.io/docs/latest/
commands/del/

Redis. Docs Redis. “Transactions. Retrieved August 03, 2024, https://redis.io/docs
/latest/develop/interact/transactions/

Redis. Set | Docs. Redis. Retrieved August 03, 2024, https://redis.io/docs/latest/
commands/set/

Redis. Understand Redis data types. Redis. Retrieved August 03, 2024, https://red
is.io/docs/latest/develop/data-types/

Redis. What is a key-value database? Redis. Retrieved August 03, 2024, https://re
dis.io/nosql/key-value-databases/

Scylla, D. B. T.C. development. “What is a wide-column database? Definition &
FAQs.” Retrieved August 03, 2024, https://www.scylladb.com/glossary/
wide-column-database/

Stax. (March 17, 2015). Retrieved August 03, 2024, https://www.datastax.com/
blog/role-based-access-control-cassandra. DataStax, “Role based access control in
Cassandra.” Data.

Words doctorate. (June 04, 2021). “Write a methodology in research proposal example,”
Words Doctorate. Retrieved August 05, 2024, https://www.wordsdoctora
te.com/blog-details/methodology-in-research-proposal-example/

Cite this article: Ying DTW, Jie CY, Shaoren C, Eui HC, Ken CW, Sathishkumar VE, et al. Comparative Analysis of SQL and NoSQL Databases: Data Models, Use
Cases, and Performance Insights. Info Res Com. 2025;2(1):47-70.

